Reputation: 67
Given this simple dataset:
data <- data.frame(ID=seq(1:15),
H.team=c("GS","LAC","MIL","CHA","MIL","ATL","TOR","CHA","LAC","GS","TOR","MIL","ATL","CHA","TOR"),
A.team=c("MIL","CHA","TOR","ATL","GS","MIL","LAC","GS","TOR","ATL","CHA","LAC","GS","MIL","ATL"),
H.pts=c(94,120,91,84,88,96,93,95,113,85,101,116,86,102,90),
A.pts=c(84,107,99,75,90,105,87,99,94,87,92,106,84,89,89))
data
ID H.team A.team H.pts A.pts
1 1 GS MIL 94 84
2 2 LAC CHA 120 107
3 3 MIL TOR 91 99
4 4 CHA ATL 84 75
5 5 MIL GS 88 90
6 6 ATL MIL 96 105
7 7 TOR LAC 93 87
8 8 CHA GS 95 99
9 9 LAC TOR 113 94
10 10 GS ATL 85 87
11 11 TOR CHA 101 92
12 12 MIL LAC 116 106
13 13 ATL GS 86 84
14 14 CHA MIL 102 89
15 15 TOR ATL 90 89
I'm trying to calculate a new rating variable (rat) for each team, the results should be:
ID H.team A.team H.pts A.pts h.rbef a.rbef h.raft a.raft
1 1 GS MIL 94 84 1500.000 1500.000 1508.487 1491.513
2 2 LAC CHA 120 107 1500.000 1500.000 1510.021 1489.979
3 3 MIL TOR 91 99 1491.513 1500.000 1481.066 1510.447
4 4 CHA ATL 84 75 1489.979 1500.000 1498.279 1491.700
5 5 MIL GS 88 90 1481.066 1508.487 1475.842 1513.711
6 6 ATL MIL 96 105 1491.700 1475.842 1479.614 1487.928
7 7 TOR LAC 93 87 1510.447 1510.021 1516.760 1503.708
8 8 CHA GS 95 99 1498.279 1513.711 1491.164 1520.826
9 9 LAC TOR 113 94 1503.708 1516.760 1517.357 1503.111
10 10 GS ATL 85 87 1520.826 1479.614 1514.361 1486.079
11 11 TOR CHA 101 92 1503.111 1491.164 1510.678 1483.597
12 12 MIL LAC 116 106 1487.928 1517.357 1497.502 1507.783
13 13 ATL GS 86 84 1486.079 1514.361 1490.516 1509.924
14 14 CHA MIL 102 89 1483.597 1497.502 1494.213 1486.886
15 15 TOR ATL 90 89 1510.678 1490.516 1513.711 1487.483
the first value of rat is 1500
for each team;
after a match is played, the value of rat is updated as follow:
rat.after=rat.before+k*(S-E)
where S = 1 if the team won, 0 otherwise
E is the matchup winning probabilities before the match starts, and is defined by the following function:
win.probs<- function(h.rbef, a.rbef, hca=64) {
h = 10^(h.rbef/400)
a = 10^(a.rbef/400)
hca = 10^(hca/400)
den = a + hca*h
h.prob = hca*h / den
a.prob = a / den
return(c(h.prob,a.prob))
}
#example (not run): win.probs(1500,1500)
k is a moving constant defined as follow:
rat.k<- function(h.pts,a.pts,h.rbef,a.rbef) {
ifelse(h.pts-a.pts>0,
20*(h.pts-a.pts+3)^0.8/(7.5+0.006*(h.rbef-a.rbef)),
20*(-(h.pts-a.pts)+3)^0.8/(7.5+0.006*(-(h.rbef-a.rbef))))
}
#example (not run): rat.k(94,84,1500,1500)
I wrote the following update function, that works well on a single match:
up.rat<- function(h.pts, a.pts, h.rbef, a.rbef, hca=64) {
h.prob = win.probs(h.rbef, a.rbef, hca)[1]
a.prob = win.probs(h.rbef, a.rbef, hca)[2]
h.win = ifelse(h.pts-a.pts>0,1,0)
a.win = ifelse(h.pts-a.pts<0,1,0)
k = rat.k(h.pts,a.pts,h.rbef,a.rbef)
h.raft = h.rbef + k * (h.win - h.prob)
a.raft = a.rbef + k * (a.win - a.prob)
return(c(h.rbef,a.rbef,h.raft,a.raft))
}
#example (not run): up.rat(94,84,1500,1500)
and, applying it "manually" to the data I found the results above. For example the first game is GS
vs MIL
: before playing the match both teams has a rating of 1500
, after the game the home team has 1508.487
, while the away team has 1491.513
(it's a zero-sum rating). So GS
will start next game with this updated rating, same for MIL
.
Can someone please help me founding a way to do this "automatically" as my original data has way more than 15 rows? My custom functions seems to work good, what I found really challenging here is to update the rating, because teams don't necessary play a match at home and the following away: the value of rating before is equal to rating after of the previous match both it was played home and away .
Note also that the number of matches played is not necessary the same for each team (here for example MIL
played 6 matches, LAC
4, and the others 5).
Thanks to anyone who will try to give me any hint or help.
Upvotes: 2
Views: 63
Reputation: 887223
We could create a function
f1 <- function(dat, start_val) {
dat[c("h.rbef", "a.rbef", "h.raft", "a.raft")] <- start_val
for(i in seq_len(nrow(data))) {
if(i == 1) {
h.rbef <- dat$h.rbef[1]
a.rbef <- dat$a.rbef[1]
} else {
hh.ind <- with(dat, tail(which(H.team[seq_len(i-1)] %in% H.team[i]), 1))
ha.ind <- with(dat, tail(which(A.team[seq_len(i-1)] %in% H.team[i]), 1))
aa.ind <- with(dat, tail(which(A.team[seq_len(i-1)] %in% A.team[i]), 1))
ah.ind <- with(dat, tail(which(H.team[seq_len(i-1)] %in% A.team[i]), 1))
if(length(hh.ind) > 0 & length(ha.ind) > 0 ) {
ix <- which.max(c(hh.ind, ha.ind))
mx <- max(hh.ind, ha.ind)
if(ix == 1) {
h.rbef <- dat$h.raft[mx]
} else {
h.rbef <- dat$a.raft[mx]
}
} else {
if(length(hh.ind) > 0) {
h.rbef <- dat$h.raft[hh.ind]
} else if(length(ha.ind) > 0) {
h.rbef <- dat$a.raft[ha.ind]
} else {
h.rbef <- dat$h.rbef[i]
}
}
if(length(aa.ind) > 0 & length(ah.ind) > 0 ) {
iy <- which.max(c(aa.ind, ah.ind))
my <- max(aa.ind, ah.ind)
if(iy == 1) {
a.rbef <- dat$a.raft[my]
} else {
a.rbef <- dat$h.raft[my]
}
} else {
if(length(aa.ind) > 0) {
a.rbef <- dat$a.raft[aa.ind]
} else if(length(ah.ind) > 0) {
a.rbef <- dat$h.raft[ah.ind]
} else {
a.rbef <- dat$a.rbef[i]
}
}
}
tmp <- up.rat(dat$H.pts[i], dat$A.pts[i], h.rbef, a.rbef)
dat[i, c("h.rbef", "a.rbef", "h.raft", "a.raft")] <- tmp
}
return(dat)
}
-testing
out <- f1(data, 1500)
-output
out
# ID H.team A.team H.pts A.pts h.rbef a.rbef h.raft a.raft
#1 1 GS MIL 94 84 1500.000 1500.000 1508.487 1491.513
#2 2 LAC CHA 120 107 1500.000 1500.000 1510.021 1489.979
#3 3 MIL TOR 91 99 1491.513 1500.000 1481.066 1510.447
#4 4 CHA ATL 84 75 1489.979 1500.000 1498.279 1491.700
#5 5 MIL GS 88 90 1481.066 1508.487 1475.842 1513.711
#6 6 ATL MIL 96 105 1491.700 1475.842 1479.614 1487.928
#7 7 TOR LAC 93 87 1510.447 1510.021 1516.760 1503.708
#8 8 CHA GS 95 99 1498.279 1513.711 1491.164 1520.826
#9 9 LAC TOR 113 94 1503.708 1516.760 1517.357 1503.111
#10 10 GS ATL 85 87 1520.826 1479.614 1514.361 1486.079
#11 11 TOR CHA 101 92 1503.111 1491.164 1510.678 1483.597
#12 12 MIL LAC 116 106 1487.928 1517.357 1497.501 1507.783
#13 13 ATL GS 86 84 1486.079 1514.361 1490.516 1509.924
#14 14 CHA MIL 102 89 1483.597 1497.501 1494.214 1486.885
#15 15 TOR ATL 90 89 1510.678 1490.516 1513.710 1487.484
Upvotes: 3