Reputation: 348
I need to group the results of two collections candidatos
and ofertas
, and then "merge" those groups to return an array with matched values.
I've created this example with the aggregate and similar data to make this easier to test:
https://mongoplayground.net/p/m0PUfdjEye4
This is the explanation of the problem that I'm facing.
I can get both groups with the desired results independently:
candidatos collection:
db.getCollection('ofertas').aggregate([
{"$group" : {_id:"$ubicacion_puesto.provincia", countProvinciaOferta:{$sum:1}}}
]);
This is the result...
ofertas collection:
db.getCollection('candidatos').aggregate([
{"$group" : {_id:"$que_busco.ubicacion_puesto_trabajo.provincia", countProvinciaCandidato:{$sum:1}}}
]);
This is the result...
What I need to do, is to aggregate those groups to merge their results based on their _id coincidence. I think I'm going in the right way with the next aggregate, but the field countOfertas
always returns 0.0
. I think that there is something wrong in my project $cond
, but I don't know what is it. This is the aggregate:
db.getCollection('candidatos').aggregate([
{"$group" : {_id:"$que_busco.ubicacion_puesto_trabajo.provincia", countProvinciaCandidato:{$sum:1}}},
{
$lookup: {
from: 'ofertas',
let: {},
pipeline: [
{"$group" : {_id:"$ubicacion_puesto.provincia", countProvinciaOferta:{$sum:1}}}
],
as: 'ofertas'
}
},
{
$project: {
_id: 1,
countProvinciaCandidato: 1,
countOfertas: {
$cond: {
if: {
$eq: ['$ofertas._id', "$_id"]
},
then: '$ofertas.countProvinciaOferta',
else: 0,
}
}
}
},
{ $sort: { "countProvinciaCandidato": -1}},
{ $limit: 20 }
]);
And this is the result, but as you can see, field countOfertas
is always 0
Any kind of help will be welcome
Upvotes: 0
Views: 66
Reputation: 8894
What you have tried is so much appreciated. But in $project
you need to use $reduce
which helps to loop through the array and satisfy the condition
Here is the code
db.candidatos.aggregate([
{
"$group": {
_id: "$que_busco.ubicacion_puesto_trabajo.provincia",
countProvinciaCandidato: { $sum: 1 }
}
},
{
$lookup: {
from: "ofertas",
let: {},
pipeline: [
{
"$group": {
_id: "$ubicacion_puesto.provincia",
countProvinciaOferta: { $sum: 1 }
}
}
],
as: "ofertas"
}
},
{
$project: {
_id: 1,
countProvinciaCandidato: 1,
countOfertas: {
"$reduce": {
"input": "$ofertas",
initialValue: 0,
"in": {
$cond: [
{ $eq: [ "$$this._id", "$_id" ] },
{ $add: [ "$$value", 1 ] },
"$$value"
]
}
}
}
}
},
{ $sort: { "countProvinciaCandidato": -1 } },
{ $limit: 20 }
])
Working Mongo playground
Note : If you need to do with aggregations only, this is fine. But I personally feel this approach is not good. My suggestion is, you can concurrently call group aggregations in different service and do it with programmatically. Because $lookup
is expensive, when you get massive data, this performance will be reduced
Upvotes: 1
Reputation: 28326
The $eq
in the $cond
is comparing an array to an ObjectId, so it never matches.
The $lookup
stage results will be in the ofertas
field as an array of documents, so '$ofertas._id'
will be an array of all the _id values.
You will probably need to use $unwind
, $reduce
after the $lookup
.
Upvotes: 1