Reputation: 68
I have a daily transactional dataset with gaps. I want to see whether a product with a reference price websiteprice
of $X on date T had an actual sold price actualsoldprice
$Y >= $X for at least 10% of previous T – 90 days. In other words, for each transaction where sale_at_or_above_refprice
== 1, we need to count how many times the actual sold price for prior transactions (of a given product) within the previous 90 days met or exceeded that transaction's reference price.
I have included first step results that I am looking for in the wanted
variable.
My data is as follows,
* Example generated by -dataex-. For more info, type help dataex
clear
input str9 orderdate str16 productcode str10 productcategory byte(websiteprice actualsoldprice sale_at_or_above_refprice var7 wanted)
"3-Jan-20" "MZZ32819-564-282" "Mens Jeans" 40 25 . . .
"8-Jan-20" "MZZ32819-564-282" "Mens Jeans" 40 40 1 . .
"12-Jan-20" "MZZ32819-564-282" "Mens Jeans" 40 40 1 . 1
"12-Sep-20" "MZZ32819-564-282" "Mens Jeans" 40 28 . . .
"18-Sep-20" "MZZ32819-564-282" "Mens Jeans" 40 24 . . .
"20-Sep-20" "MZZ32819-564-282" "Mens Jeans" 50 30 . . .
"27-Sep-20" "MZZ32819-564-282" "Mens Jeans" 50 25 . . .
"11-Oct-20" "MZZ32819-564-282" "Mens Jeans" 40 20 . . .
"19-Oct-20" "MZZ32819-564-282" "Mens Jeans" 35 24 . . .
"2-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 . 6
"2-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 7
"4-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 8
"7-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 9
"7-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 . 7
"9-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 . 8
"11-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 12
"12-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 13
"14-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 14
"15-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 15
"18-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 . 16
"24-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 . 9
end
EDIT - I have updated the wanted
variable and include a new_wanted
. The difference is taking into account repeated dates with multiple prices. Also including 2 products to run this process by id.
* Example generated by -dataex-. For more info, type help dataex
clear
input str9 orderdate str16 productcode str10 productcategory byte(websiteprice actualsoldprice sale_at_or_above_refprice wanted new_wanted)
"3-Jan-20" "MZZ32819-564-282" "Mens Jeans" 40 25 . . .
"8-Jan-20" "MZZ32819-564-282" "Mens Jeans" 40 40 1 0 0
"12-Jan-20" "MZZ32819-564-282" "Mens Jeans" 40 40 1 1 1
"12-Sep-20" "MZZ32819-564-282" "Mens Jeans" 40 28 . . .
"18-Sep-20" "MZZ32819-564-282" "Mens Jeans" 40 24 . . .
"20-Sep-20" "MZZ32819-564-282" "Mens Jeans" 50 30 . . .
"27-Sep-20" "MZZ32819-564-282" "Mens Jeans" 50 25 . . .
"11-Oct-20" "MZZ32819-564-282" "Mens Jeans" 40 20 . . .
"19-Oct-20" "MZZ32819-564-282" "Mens Jeans" 35 24 . . .
"2-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 6 6
"2-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 6 6
"4-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 8 7
"7-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 9 8
"7-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 7 7
"9-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 8 9
"11-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 12 10
"12-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 13 11
"14-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 14 12
"15-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 15 13
"18-Nov-20" "MZZ32819-564-282" "Mens Jeans" 14 14 1 16 14
"24-Nov-20" "MZZ32819-564-282" "Mens Jeans" 20 20 1 9 9
"6-Jan-20" "ADDZ4449-524-645" "Mens Bags" 60 50 . . .
"11-Jan-20" "ADDZ4449-524-645" "Mens Bags" 70 60 . . .
"12-Feb-20" "ADDZ4449-524-645" "Mens Bags" 60 60 1 . 1
"12-Jul-20" "ADDZ4449-524-645" "Mens Bags" 60 50 . . .
"18-Sep-20" "ADDZ4449-524-645" "Mens Bags" 50 55 1 . 1
"20-Sep-20" "ADDZ4449-524-645" "Mens Bags" 50 45 . . .
"20-Sep-20" "ADDZ4449-524-645" "Mens Bags" 66 45 . . .
"12-Oct-20" "ADDZ4449-524-645" "Mens Bags" 55 60 1 . 1
"19-Oct-20" "ADDZ4449-524-645" "Mens Bags" 60 60 1 . 1
"2-Nov-20" "ADDZ4449-524-645" "Mens Bags" 70 73 1 . 0
"2-Nov-20" "ADDZ4449-524-645" "Mens Bags" 60 56 . . .
"4-Nov-20" "ADDZ4449-524-645" "Mens Bags" 60 60 1 . 3
"7-Nov-20" "ADDZ4449-524-645" "Mens Bags" 50 45 . . .
"7-Nov-20" "ADDZ4449-524-645" "Mens Bags" 66 66 1 . 1
"9-Nov-20" "ADDZ4449-524-645" "Mens Bags" 60 56 . . .
"11-Nov-20" "ADDZ4449-524-645" "Mens Bags" 60 76 1 . 5
"12-Nov-20" "ADDZ4449-524-645" "Mens Bags" 60 71 1 . 6
"13-Nov-20" "ADDZ4449-524-645" "Mens Bags" 60 26 . . .
"15-Nov-20" "ADDZ4449-524-645" "Mens Bags" 65 70 1 . 4
"15-Nov-20" "ADDZ4449-524-645" "Mens Bags" 67 70 1 . 3
"22-Nov-20" "ADDZ4449-524-645" "Mens Bags" 56 70 1 . 9
end
Below is the code that I am trying to adapt for this task. Credit to Ken Chui from STATALIST.
gen date1 = date(orderdate, "DMY", 2020)
format date1 %td
local max = _N
gen wanted2 = .
foreach x of numlist 1/`max'{
capture drop get get_sum
gen get = actualsoldprice >= actualsoldprice[`x']
rangestat (sum) get, interval(date -90 -1)
replace wanted2 = get_sum if _n == `x'
}
replace wanted2 = . if sale_at_or_above_refprice == .
Upvotes: 1
Views: 496
Reputation: 3255
*Start by converting date to Stata date
gen stata_date = date(orderdate,"DM20Y")
format stata_date %td
*Sort data and product code as stop conditions in while loop expect them to be sorted
sort productcode stata_date
*Create varialbe to store result
gen count_less = .
*Loop over all rows
count
forvalue row = 1/`r(N)' {
*Only applicable to
if sale_at_or_above_refprice[`row'] == 1 {
*Set result variable to 0 for this row
replace count_less = 0 if _n == `row'
*Initate locals used in while loop
local true = 1
local row_skip = 1
local count = 0
local last_date = stata_date[`row']
*Loop until any stop condition sets local true to 0
while `true' == 1 {
*Test if row_skip hits top of data set (i.e row 0)
if `row'-`row_skip' == 0 local true = 0
*Test that product is same in compare row
else if productcode[`row'] != productcode[`row'-`row_skip'] local true = 0
*Test that previous order is within 90 days
else if stata_date[`row'] - stata_date[`row'-`row_skip'] > 90 local true = 0
*Test if actualsoldprice is less thatn old websiteprice
else if websiteprice[`row'] <= actualsoldprice[`row'-`row_skip'] {
* Each date can only be counted once, so test if date is last date counted
if `last_date' != stata_date[`row'-`row_skip'] {
*Compare row fits condition, add 1 to counter
local count = `count' + 1
*Update last counted date
local last_date = stata_date[`row'-`row_skip']
}
}
*Skip one more prevuous row
local row_skip = `row_skip' + 1
}
*Add the count result to the result varaible for this row
replace count_less = `count' if _n == `row'
}
}
Upvotes: 2