Reputation: 61
My dataframe looks like the following:
id state level
0 1 [p, t] [dsd]
1 3 [t, t] [dsds, dsd]
2 4 [l, l] [jgddf, vdv]
3 6 [u, c] [cxxc, jgddf]
What I am trying to do is to check if the level
column contains part or whole string in the list and add a new column based on that. This is how I am trying to accomplish that (it includes how I am creating dataframe and sorting and filtering and merging elements in each row):
import numpy as np
import pandas as pd
something = [[1, "p", "dsd"], [3, "t", "dsd"], [6, "u", "jgddf"], [1, "p", "dsd"], [4, "l", "jgddf"], [1, "t", "dsd"],
[3, "t", "dsds"], [6, "c", "cxxc"], [1, "p", "dsd"], [4, "l", "vdv"]]
test = pd.DataFrame(something)
test = test.drop_duplicates()
test.columns = ['id', 'state', 'level']
test = test.sort_values(by=['id'], ascending=True)
test_unique = test["id"].unique()
df_aslist = test.groupby(['id']).aggregate(lambda x: list(x)).reset_index()
#making it a set to remove duplicates
df_aslist['level'] = df_aslist['level'].apply(lambda x: list(set(x)))
print(df_aslist)
conditions = [(df_aslist["level"].str.contains("ds") & df_aslist["level"].str.contains("sd")),
(df_aslist["level"].str.contains("cx") & df_aslist["level"].str.contains("vd"))]
values = ["term 1", "term 2"]
df_aslist["label"] = np.select(conditions, values)
print(df_aslist)
Output:
id state level label
0 1 [p, t] [tere] 0
1 3 [t, t] [dsds, dsd] 0
2 4 [l, l] [vdv, jgddf] 0
3 6 [u, c] [cxxc, jgddf] 0
Ideally it should show the following, where the rows that didnt match the condition should disappear and rest remain with new labels.
id state level label
1 3 [t, t] [dsds, dsd] term 1
2 4 [l, l] [vdv, jgddf] term 2
3 6 [u, c] [cxxc, jgddf] term 2
Upvotes: 0
Views: 63
Reputation: 24314
Try with astype()
method:
df_aslist[['state','level']]=df_aslist[['state','level']].astype(str)
#the above code change the list inside your columns to string
conditions=[(df_aslist["level"].str.contains("ds") & df_aslist["level"].str.contains("sd")),
(df_aslist["level"].str.contains("cx") & df_aslist["level"].str.contains("vd"))
]
values = ["term 1", "term 2"]
df_aslist["label"] = np.select(conditions, values)
Finally filter out your dataframe:
df_aslist=df_aslist.query("label!='0'")
If you print df_aslist
you will get your desired output
Note: If you want those list back then use pd.eval()
:
df_aslist[['state','level']]=df_aslist[['state','level']].apply(pd.eval)
Upvotes: 1