Reputation: 1148
I have a dataframe df
which looks like this:
df <- read.table(text =
"ID Q1_PM Q1_TP Q1_overall Q2_PM Q2_LS Q2_overall
1 1 2 3 1 2 2
2 0 NA NA 2 1 1
3 2 1 1 3 4 0
4 1 0 2 4 0 2
5 NA 1 NA 0 NA 0
6 2 0 1 1 NA NA"
, header = TRUE)
To explain a little further, my desired output is as below:
ID Q1_PM Q1_TP Q1_overall Q2_PM Q2_LS Q2_overall Q1_check Q2_check
1 1 2 3 1 2 2 "above" "within"
2 0 NA NA 2 1 1 NA "within"
3 2 1 1 3 4 0 "within" "below"
4 1 0 2 4 0 2 "above" "within"
5 NA 1 NA 0 NA 0 NA "within"
6 2 0 1 1 NA NA "within" NA
Based on the value in columns Q1_PM
and Q1_TP
, I want to see whether the value in column Q1_overall
is within their range or not? If, not in range, is the value above or below the range? To track this, I want to add an additional column Q1_check
.
Similarly, based on the values of Q2_PM
and Q2_LS
, I want to check if the value of Q2_overall
is within their range or not? If not in range, is it above or below the range? Again, to track this, I want to add an additional column Q2_check
1- For this, I want to add additional columns Q1_check
and Q2_check
where the first column is for the comparisons that involve Q1
items and the second column is for the comparisons that involve Q2
items.
2- The columns could contain the following values: above
, below
and within
.
3- The case when the columns named overall
have NAs
, then the extra columns could also have NAs
.
I have looked for related posts such as: Add column with values depending on another column to a dataframe and Create categories by comparing a numeric column with a fixed value but I am running into errors as discussed below.
The only solution, I can think of is, along these lines:
df$Q1_check <- ifelse(data$Q1_overall < data$Q1_PM, 'below',
ifelse(data$Q1_overall > data$Q1_TP, 'above',
ifelse(is.na(data$Q1_overall), NA, 'within')))
But it results in following error: Error in data$Q1_overall : object of type 'closure' is not subsettable
. I do not understand what the possible issue could be.
OR
df %>%
mutate(Regulation = case_when(Q1_overall < Q1_PM ~ 'below',
Q1_overall > Q1_TP ~ 'above',
Q1_PM < Q1_overall < Q1_TP, 'within'))
This also results in error Error: unexpected '<' in: "Q1_overall > Q1_TP ~ 'above', Q1_PM < Q1_overall <"
How can the solution be extended if (let's say) the columns are these:
"Q1 Comm - 01 Scope Thesis"
"Q1 Comm - 02 Scope Project"
"Q1 Comm - 03 Learn Intern"
"Q1 Comm - 04 Biography"
"Q1 Comm - 05 Exhibit"
"Q1 Comm - 06 Social Act"
"Q1 Comm - 07 Post Project"
"Q1 Comm - 08 Learn Plant"
"Q1 Comm - 09 Study Narrate"
"Q1 Comm - 10 Learn Participate"
"Q1 Comm - 11 Write 1"
"Q1 Comm - 12 Read 2"
"Q1 Comm - Overall Study Plan"
How can we identify when the column Q1 Comm - Overall Study Plan
is:
1 - Below
the min()
of all the other columns, or
2 - Above
the max()
of all the other columns, or
3 - Within
the range of all the other columns
For the updated fields, I am also including the dput(df)
dput(df)
structure(list(ï..ID = c(10L, 31L, 225L, 243L), Q1.Comm...01.Scope.Thesis = c(NA,
2L, 0L, NA), Q1.Comm...02.Scope.Project = c(NA, NA, NA, 2L),
Q1.Comm...03.Learn.Intern = c(4L, NA, NA, NA), Q1.Comm...04.Biography = c(NA,
NA, NA, 1L), Q1.Comm...05.Exhibit = c(4L, 2L, NA, NA), Q1.Comm...06.Social.Act = c(NA,
NA, NA, 3L), Q1.Comm...07.Post.Project = c(NA, NA, 3L, NA
), Q1.Comm...08.Learn.Plant = c(NA, NA, NA, 4L), Q1.Comm...09.Study.Narrate = c(NA,
NA, 0L, NA), Q1.Comm...10.Learn.Participate = c(4L, NA, NA,
NA), Q1.Comm...11.Write.1 = c(NA, 2L, NA, NA), Q1.Comm...12.Read.2 = c(NA,
NA, 1L, NA), Q1.Comm...Overall.Study.Plan = c(4L, 1L, 2L,
NA), X = c(NA, NA, NA, NA), X.1 = c(NA, NA, NA, NA), X.2 = c(NA,
NA, NA, NA)), class = "data.frame", row.names = c(NA, -4L
))
Any advice on how to achieve this would be greatly appreciated. Thank you!
Upvotes: 1
Views: 905
Reputation: 5232
comparison <- function(dt, group_cols, new_col, compare_col){
dt[,
c("min", "max") := transpose(pmap(.SD, range, na.rm = TRUE)), .SDcols = group_cols
][,(new_col) := fcase(
is.na(get(compare_col)), NA_character_,
get(compare_col) < min, "below",
get(compare_col) > max, "above",
default = "within"
)
][]
}
group_cols <- names(df) %>%
str_subset("^Q[0-9]+") %>%
str_subset("overall", negate = TRUE) %>%
split(str_extract(., "^Q[0-9]+"))
new_cols <- names(group_cols) %>% str_c("_check")
compare_cols <- names(group_cols) %>% str_c("_overall")
setDT(df)
pwalk(list(group_cols, new_cols, compare_cols), ~comparison(df, ...))
df[, c("min", "max") := NULL]
Upvotes: 1
Reputation: 2783
Largely based on Ronak's great solution:
df <- structure(list(ID = c(10L, 31L, 225L, 243L),
`Q1 Comm - 01 Scope Thesis` = c(NA, 2L, 0L, NA),
`Q1 Comm - 02 Scope Project` = c(NA, NA, NA, 2L),
`Q1 Comm - 03 Learn Intern` = c(4L, NA, NA, NA),
`Q1 Comm - 04 Biography` = c(NA, NA, NA, 1L),
`Q1 Comm - 05 Exhibit` = c(4L, 2L, NA, NA),
`Q1 Comm - 06 Social Act` = c(NA, NA, NA, 3L),
`Q1 Comm - 07 Post Project` = c(NA, NA, 3L, NA),
`Q1 Comm - 08 Learn Plant` = c(NA, NA, NA, 4L),
`Q1 Comm - 09 Study Narrate` = c(NA, NA, 0L, NA),
`Q1 Comm - 10 Learn Participate` = c(4L, NA, NA,NA),
`Q1 Comm - 11 Write 1` = c(NA, 2L, NA, NA),
`Q1 Comm - 12 Read 2` = c(NA, NA, 1L, NA),
`Q1 Comm - Overall Study Plan` = c(4L, 1L, 2L, NA),
X = c(NA, NA, NA, NA),
`X 1` = c(NA, NA, NA, NA),
`X 2` = c(NA, NA, NA, NA)),
class = "data.frame", row.names = c(NA, -4L))
library(dplyr)
comparison <- function(df, prefix) {
df <- df[grep(prefix, colnames(df))]
min <- apply(df[-grep("Overall", colnames(df))], 1, min, na.rm = T)
max <- apply(df[-grep("Overall", colnames(df))], 1, max, na.rm = T)
z <- df[grep("Overall", colnames(df))]
case_when(is.na(z) ~ NA_character_,
z >= min & z <= max ~ 'within',
z > max ~ 'above',
TRUE ~ 'below')
}
prefixes <- sub(" \\- Overall.*", "", colnames(df[grep("Overall", colnames(df))]))
for (i in prefixes) {
df <- df %>%
mutate("{i} - Check" := comparison(df, i))
}
> print(df)
ID Q1 Comm - 01 Scope Thesis Q1 Comm - 02 Scope Project Q1 Comm - 03 Learn Intern Q1 Comm - 04 Biography
1 10 NA NA 4 NA
2 31 2 NA NA NA
3 225 0 NA NA NA
4 243 NA 2 NA 1
Q1 Comm - 05 Exhibit Q1 Comm - 06 Social Act Q1 Comm - 07 Post Project Q1 Comm - 08 Learn Plant
1 4 NA NA NA
2 2 NA NA NA
3 NA NA 3 NA
4 NA 3 NA 4
Q1 Comm - 09 Study Narrate Q1 Comm - 10 Learn Participate Q1 Comm - 11 Write 1 Q1 Comm - 12 Read 2
1 NA 4 NA NA
2 NA NA 2 NA
3 0 NA NA 1
4 NA NA NA NA
Q1 Comm - Overall Study Plan X X 1 X 2 Q1 Comm - Check
1 4 NA NA NA within
2 1 NA NA NA below
3 2 NA NA NA within
4 NA NA NA NA <NA>
Upvotes: 1
Reputation: 26218
If your columns are named similarly, you may do this for any number of Qs simultaneously.
-
in column names to acceptable _
Q2_LS
to Q2_TP
for sake of similarityWhat is does -
_overall
(2 here but can be any number)_PM
/ _TP
in lieu of _overall
allocates value below
_PM
/_TP
in lieu of _overall
allocates value above
get
alongwith cur_column
and stringr
string replacement functionwithin
_overall
from these columns and pasting _check
instead (I used .names
argument of across
here)
stringr::str_remove
inside glue
argument (.names
follow glue style of formula)df <- read.table(text =
"ID Q1_PM Q1_TP Q1_overall Q2_PM Q2_TP Q2_overall
1 1 2 3 1 2 2
2 0 NA NA 2 1 1
3 2 1 1 3 4 0
4 1 0 2 4 0 2
5 NA 1 NA 0 NA 0
6 2 0 1 1 NA NA"
, header = TRUE)
df
#> ID Q1_PM Q1_TP Q1_overall Q2_PM Q2_TP Q2_overall
#> 1 1 1 2 3 1 2 2
#> 2 2 0 NA NA 2 1 1
#> 3 3 2 1 1 3 4 0
#> 4 4 1 0 2 4 0 2
#> 5 5 NA 1 NA 0 NA 0
#> 6 6 2 0 1 1 NA NA
library(tidyverse)
df %>% mutate(across(ends_with('overall'), ~ case_when(. < pmin(get(str_replace(cur_column(), '_overall', '_PM')),
get(str_replace(cur_column(), '_overall', '_TP'))) ~ 'below',
. > pmax(get(str_replace(cur_column(), '_overall', '_PM')),
get(str_replace(cur_column(), '_overall', '_TP'))) ~ 'above',
is.na(.) ~ NA_character_,
TRUE ~ 'within'),
.names = '{str_remove(.col,"_overall")}_check'))
#> ID Q1_PM Q1_TP Q1_overall Q2_PM Q2_TP Q2_overall Q1_check Q2_check
#> 1 1 1 2 3 1 2 2 above within
#> 2 2 0 NA NA 2 1 1 <NA> within
#> 3 3 2 1 1 3 4 0 within below
#> 4 4 1 0 2 4 0 2 above within
#> 5 5 NA 1 NA 0 NA 0 <NA> within
#> 6 6 2 0 1 1 NA NA within <NA>
Created on 2021-06-09 by the reprex package (v2.0.0)
Upvotes: 1
Reputation: 8880
df <- read.table(text =
"ID Q1-PM Q1-TP Q1-overall Q2-PM Q2-LS Q2-overall
1 1 2 3 1 2 2
2 0 NA NA 2 1 1
3 2 1 1 3 4 0
4 1 0 2 4 0 2
5 NA 1 NA 0 NA 0
6 2 0 1 1 NA NA"
, header = TRUE)
library(tidyverse)
f <- function(x, y, z){
case_when(
z < pmin(x, y, na.rm = TRUE) ~ "below",
z > pmax(x, y, na.rm = TRUE) ~ "abowe",
between(z, pmin(x, y, na.rm = TRUE), pmax(x, y, na.rm = TRUE)) ~ "within"
)
}
df %>%
rowwise() %>%
mutate(Q1_check = f(Q1.PM, Q1.TP, Q1.overall),
Q2_check = f(Q2.PM, Q2.LS, Q2.overall))
#> # A tibble: 6 x 9
#> # Rowwise:
#> ID Q1.PM Q1.TP Q1.overall Q2.PM Q2.LS Q2.overall Q1_check Q2_check
#> <int> <int> <int> <int> <int> <int> <int> <chr> <chr>
#> 1 1 1 2 3 1 2 2 abowe within
#> 2 2 0 NA NA 2 1 1 <NA> within
#> 3 3 2 1 1 3 4 0 within below
#> 4 4 1 0 2 4 0 2 abowe within
#> 5 5 NA 1 NA 0 NA 0 <NA> within
#> 6 6 2 0 1 1 NA NA within <NA>
Created on 2021-06-09 by the reprex package (v2.0.0)
Upvotes: 1
Reputation: 388817
Seems a very long winded approach -
library(dplyr)
comparison <- function(x, y, z) {
case_when(is.na(z) ~ NA_character_,
z >= x & z <= y |
z >= y & z <= x |
is.na(x) & y == z |
is.na(y) & x == z ~ 'within',
z > x & z > y ~ 'above',
TRUE ~ 'below')
}
df %>%
mutate(Q1_check = comparison(Q1.PM, Q1.TP, Q1.overall),
Q2_check = comparison(Q2.PM, Q2.LS, Q2.overall))
# ID Q1.PM Q1.TP Q1.overall Q2.PM Q2.LS Q2.overall Q1_check Q2_check
#1 1 1 2 3 1 2 2 above within
#2 2 0 NA NA 2 1 1 <NA> within
#3 3 2 1 1 3 4 0 within below
#4 4 1 0 2 4 0 2 above within
#5 5 NA 1 NA 0 NA 0 <NA> within
#6 6 2 0 1 1 NA NA within <NA>
Upvotes: 1