muazfaiz
muazfaiz

Reputation: 5021

Convert nested CSV to nested JSON using Pandas

I have a dataframe like this

org.iden.account,org.iden.id,adress.city,adress.country,person.name.fullname,person.gender,person.birthYear,subs.id,subs.subs1.birthday,subs.subs1.org.address.country,subs.subs1.org.address.strret1,subs.org.buyer.email.address,subs.org.buyer.phone.number
account123,id123,riga,latvia,laura,female,1990,subs123,1990-12-14T00:00:00Z,latvia,street 1,[email protected]|[email protected],+371401234567
account123,id000,riga,latvia,laura,female,1990,subs456,1990-12-14T00:00:00Z,latvia,street 1,[email protected],+371401234567
account123,id456,riga,latvia,laura,female,1990,subs789,1990-12-14T00:00:00Z,latvia,street 1,[email protected],+371401234567

And I need to convert this into a nested JSON based on the column separated by a dot(.). So for the first row the expected result should be

{
    "org": {
        "iden": {
            "account":  "account123",
            "id": "id123"
        }
    },
    "address": {
        "city": "riga",
        "country": "country"
    },
    "person": {
        "name": {
            "fullname": laura,
        },
        "gender": "female",
        "birthYear": 1990
    },
    "subs": {
        "id": "subs123",
        "subs1": {
            "birthday": "1990-12-14T00:00:00Z",
            "org": {
                "address": {
                    "country": "latvia",
                    "street1": "street 1"
                }
            }
        },
        "org": {
            "buyer": {
                "email": {
                    "address": "[email protected]|[email protected]"
                },
            "phone": {
                "number": "+371401234567"
                }
            }
        }
    }

}

And then of course all the records as a list. I have tried to use simple pandas .to_json() but it didn't help and I get the following which doesn't have the nested structure I need.

[{"org.iden.account":"account123","org.iden.id":"id123","adress.city":"riga","adress.country":"latvia","person.name.fullname":"laura","person.gender":"female","person.birthYear":1990,"subs.id":"subs123","subs.subs1.birthday":"1990-12-14T00:00:00Z","subs.subs1.org.address.country":"latvia","subs.subs1.org.address.strret1":"street 1","subs.org.buyer.email.address":"[email protected]|[email protected]","subs.org.buyer.phone.number":371401234567},{"org.iden.account":"account123","org.iden.id":"id000","adress.city":"riga","adress.country":"latvia","person.name.fullname":"laura","person.gender":"female","person.birthYear":1990,"subs.id":"subs456","subs.subs1.birthday":"1990-12-14T00:00:00Z","subs.subs1.org.address.country":"latvia","subs.subs1.org.address.strret1":"street 1","subs.org.buyer.email.address":"[email protected]","subs.org.buyer.phone.number":371407654321},{"org.iden.account":"account123","org.iden.id":"id456","adress.city":"riga","adress.country":"latvia","person.name.fullname":"laura","person.gender":"female","person.birthYear":1990,"subs.id":"subs789","subs.subs1.birthday":"1990-12-14T00:00:00Z","subs.subs1.org.address.country":"latvia","subs.subs1.org.address.strret1":"street 1","subs.org.buyer.email.address":"[email protected]","subs.org.buyer.phone.number":371407654321}]

Any help in this would be highly appreciated!

Upvotes: 0

Views: 171

Answers (2)

Axe319
Axe319

Reputation: 4365

Assuming your json structure looks something like this

json_data = [
    {
        "org.iden.account": "account123",
        "org.iden.id": "id123",
        "adress.city": "riga",
        "adress.country": "latvia",
        "person.name.fullname": "laura",
        "person.gender": "female",
        "person.birthYear": 1990,
        "subs.id": "subs123",
        "subs.subs1.birthday": "1990-12-14T00:00:00Z",
        "subs.subs1.org.address.country": "latvia",
        "subs.subs1.org.address.strret1": "street 1",
        "subs.org.buyer.email.address": "[email protected]|[email protected]",
        "subs.org.buyer.phone.number": 371401234567
    },
    {
        "org.iden.account": "account123",
        "org.iden.id": "id000",
        "adress.city": "riga",
        "adress.country": "latvia",
        "person.name.fullname": "laura",
        "person.gender": "female",
        "person.birthYear": 1990,
        "subs.id": "subs456",
        "subs.subs1.birthday": "1990-12-14T00:00:00Z",
        "subs.subs1.org.address.country": "latvia",
        "subs.subs1.org.address.strret1": "street 1",
        "subs.org.buyer.email.address": "[email protected]",
        "subs.org.buyer.phone.number": 371407654321
    },
    {
        "org.iden.account": "account123",
        "org.iden.id": "id456",
        "adress.city": "riga",
        "adress.country": "latvia",
        "person.name.fullname": "laura",
        "person.gender": "female",
        "person.birthYear": 1990,
        "subs.id": "subs789",
        "subs.subs1.birthday": "1990-12-14T00:00:00Z",
        "subs.subs1.org.address.country": "latvia",
        "subs.subs1.org.address.strret1": "street 1",
        "subs.org.buyer.email.address": "[email protected]",
        "subs.org.buyer.phone.number": 371407654321
    }
]

You could nest it on a dict by dict basis.

def nestify(unnested):
    nested = dict()
    for k, v in unnested.items():
        current_dict = nested
        parts = k.split('.')
        for i in parts[:-1]:
            if i not in current_dict:
                current_dict[i] = dict()
            current_dict = current_dict[i]
        current_dict[parts[-1]] = v
    return nested

This function takes one of the unnested dicts, iterates through the keys and assigns the value to the final depth.

Commented version

def nestify(unnested):
    # this will be our return value
    nested = dict()
    for k, v in unnested.items():
        # current_dict is the current dict were operating on
        # gets reset to the base dict on each unnested key
        current_dict = nested
        parts = k.split('.')
        # only create dicts up to the final period
        # for example, current_dict is the base
        # and creates an empty dict under the org key
        # then current_dict is under the org key
        # and creates an empty dict under the iden key
        # then current_dict is under the iden key
        for i in parts[:-1]:
            # no reason to create an empty dict if it was
            # already created for a prior key
            if i not in current_dict:
                current_dict[i] = dict()
            current_dict = current_dict[i]
        # assign the value of the unnested dict
        # to each final current_dict
        # for example, the final part of the first key is "account"
        # so rather than assign an empty dict, assign it "account123" 
        current_dict[parts[-1]] = v
    return nested

Then you can just call it on each element of the json_data list in a comprehension.

nested = [nestify(i) for i in json_data]

Full code:

json_data = [
    {
        "org.iden.account": "account123",
        "org.iden.id": "id123",
        "adress.city": "riga",
        "adress.country": "latvia",
        "person.name.fullname": "laura",
        "person.gender": "female",
        "person.birthYear": 1990,
        "subs.id": "subs123",
        "subs.subs1.birthday": "1990-12-14T00:00:00Z",
        "subs.subs1.org.address.country": "latvia",
        "subs.subs1.org.address.strret1": "street 1",
        "subs.org.buyer.email.address": "[email protected]|[email protected]",
        "subs.org.buyer.phone.number": 371401234567
    },
    {
        "org.iden.account": "account123",
        "org.iden.id": "id000",
        "adress.city": "riga",
        "adress.country": "latvia",
        "person.name.fullname": "laura",
        "person.gender": "female",
        "person.birthYear": 1990,
        "subs.id": "subs456",
        "subs.subs1.birthday": "1990-12-14T00:00:00Z",
        "subs.subs1.org.address.country": "latvia",
        "subs.subs1.org.address.strret1": "street 1",
        "subs.org.buyer.email.address": "[email protected]",
        "subs.org.buyer.phone.number": 371407654321
    },
    {
        "org.iden.account": "account123",
        "org.iden.id": "id456",
        "adress.city": "riga",
        "adress.country": "latvia",
        "person.name.fullname": "laura",
        "person.gender": "female",
        "person.birthYear": 1990,
        "subs.id": "subs789",
        "subs.subs1.birthday": "1990-12-14T00:00:00Z",
        "subs.subs1.org.address.country": "latvia",
        "subs.subs1.org.address.strret1": "street 1",
        "subs.org.buyer.email.address": "[email protected]",
        "subs.org.buyer.phone.number": 371407654321
    }
]


def nestify(unnested):
    nested = dict()
    for k, v in unnested.items():
        current_dict = nested
        parts = k.split('.')
        for i in parts[:-1]:
            if i not in current_dict:
                current_dict[i] = dict()
            current_dict = current_dict[i]
        current_dict[parts[-1]] = v
    return nested

nested = [nestify(i) for i in json_data]
print(nested)

Output:

[
    {
        'adress': {
            'city': 'riga', 
            'country': 'latvia'
        },
        'org': {
            'iden': {
                'account': 'account123', 
                'id': 'id123'
            }
        },
        'person': {
            'birthYear': 1990,
            'gender': 'female',
            'name': {
                'fullname': 'laura'
            }
        },
        'subs': {
            'id': 'subs123',
            'org': {
                'buyer': {
                    'email': {
                        'address': '[email protected]|[email protected]'
                    },
                    'phone': {
                        'number': 371401234567
                    }
                }
            },
            'subs1': {
                'birthday': '1990-12-14T00:00:00Z',
                'org': {
                    'address': {
                        'country': 'latvia',
                        'strret1': 'street 1'
                    }
                }
            }
        }
    },
    {
        'adress': {
            'city': 'riga', 
            'country': 'latvia'
        },
        'org': {
            'iden': {
                'account': 'account123', 
                'id': 'id000'
            }
        },
        'person': {
            'birthYear': 1990,
            'gender': 'female',
            'name': {
                'fullname': 'laura'
            }
        },
        'subs': {
            'id': 'subs456',
            'org': {
                'buyer': {
                    'email': {
                        'address': '[email protected]'
                    },
                    'phone': {
                        'number': 371407654321
                    }
                }
            },
            'subs1': {
                'birthday': '1990-12-14T00:00:00Z',
                'org': {
                    'address': {
                        'country': 'latvia',
                        'strret1': 'street 1'
                    }
                }
            }
        }
    },
    {
        'adress': {
            'city': 'riga', 
            'country': 'latvia'
        },
        'org': {
            'iden': {
                'account': 'account123', 
                'id': 'id456'
            }
        },
        'person': {
            'birthYear': 1990,
            'gender': 'female',
            'name': {
                'fullname': 'laura'
            }
        },
        'subs': {
            'id': 'subs789',
            'org': {
                'buyer': {
                    'email': {
                        'address': '[email protected]'
                    },
                    'phone': {
                        'number': 371407654321
                    }
                }
            },
            'subs1': {
                'birthday': '1990-12-14T00:00:00Z',
                'org': {
                    'address': {
                        'country': 'latvia',
                        'strret1': 'street 1'
                    }
                }
            }
        }
    }
]

Upvotes: 0

Corralien
Corralien

Reputation: 120429

def df_to_json(row):
    tree = {}
    for item in row.index:
        t = tree
        for part in item.split('.'):
            prev, t = t, t.setdefault(part, {})
        prev[part] = row[item]
    return tree
>>> df.apply(df_to_json, axis='columns').tolist()

[{'org': {'iden': {'account': 'account123', 'id': 'id123'}},
  'adress': {'city': 'riga', 'country': 'latvia'},
  'person': {'name': {'fullname': 'laura'},
   'gender': 'female',
   'birthYear': 1990},
  'subs': {'id': 'subs123',
   'subs1': {'birthday': '1990-12-14T00:00:00Z',
    'org': {'address': {'country': 'latvia', 'strret1': 'street 1'}}},
   'org': {'buyer': {'email': {'address': '[email protected]|[email protected]'},
     'phone': {'number': 371401234567}}}}},
 {'org': {'iden': {'account': 'account123', 'id': 'id000'}},
  'adress': {'city': 'riga', 'country': 'latvia'},
  'person': {'name': {'fullname': 'laura'},
   'gender': 'female',
   'birthYear': 1990},
  'subs': {'id': 'subs456',
   'subs1': {'birthday': '1990-12-14T00:00:00Z',
    'org': {'address': {'country': 'latvia', 'strret1': 'street 1'}}},
   'org': {'buyer': {'email': {'address': '[email protected]'},
     'phone': {'number': 371401234567}}}}},
 {'org': {'iden': {'account': 'account123', 'id': 'id456'}},
  'adress': {'city': 'riga', 'country': 'latvia'},
  'person': {'name': {'fullname': 'laura'},
   'gender': 'female',
   'birthYear': 1990},
  'subs': {'id': 'subs789',
   'subs1': {'birthday': '1990-12-14T00:00:00Z',
    'org': {'address': {'country': 'latvia', 'strret1': 'street 1'}}},
   'org': {'buyer': {'email': {'address': '[email protected]'},
     'phone': {'number': 371401234567}}}}}]

Upvotes: 1

Related Questions