Reputation: 251
this is the data I am working with:
> data
Segment Product Value Key
1 non-domestic S1 517.50760307564053 Actuals Sales
2 non-domestic S2 1235.3088913918129 Actuals Sales
3 non-domestic S3 2141.6841816176966 Actuals Sales
4 domestic S1 -958.38836859580044 Actuals Sales
5 domestic S2 -1129.5593769492507 Actuals Sales
6 domestic S3 -137.68477107274975 Actuals Sales
7 non-domestic S1 -296.07559218703756 Quarter Sales
8 non-domestic S2 1092.0390648120747 Quarter Sales
9 non-domestic S3 1156.2866848179935 Quarter Sales
10 domestic S1 -1975.0222255105061 Quarter Sales
11 domestic S2 -2549.8125184965966 Quarter Sales
12 domestic S3 -2608.2434152116011 Quarter Sales
I am trying to spread it in order to get a table with 6 rows and 4 columns (Segment, Product, Actuals Sales, Quarter Sales
) without missing values
spread(data=data, key=Key, value=Value)
Unfortunately, what I get is this. I understand that it is because there are non unique values in columns Segment
and Product
.
Segment Product Actuals Sales Quarter Sales
1 domestic S1 -958.38836859580044 <NA>
2 domestic S2 -1129.5593769492507 <NA>
3 domestic S3 -137.68477107274975 <NA>
4 domestic S1 <NA> -1975.0222255105061
5 domestic S2 <NA> -2549.8125184965966
6 domestic S3 <NA> -2608.2434152116011
7 non-domestic S1 517.50760307564053 <NA>
8 non-domestic S2 1235.3088913918129 <NA>
9 non-domestic S3 2141.6841816176966 <NA>
10 non-domestic S1 <NA> -296.07559218703756
11 non-domestic S2 <NA> 1092.0390648120747
12 non-domestic S3 <NA> 1156.2866848179935
Could you please help me, how I can remove the missing values and create a table, where values in the first two columns are not duplicated?
Here is the reproductible example:
> dput(data)
structure(list(Segment = c("non-domestic", "non-domestic", "non-domestic",
"domestic", "domestic", "domestic", "non-domestic ", "non-domestic ",
"non-domestic ", "domestic ", "domestic ", "domestic "), Product = c("S1",
"S2", "S3", "S1", "S2", "S3", "S1", "S2", "S3", "S1", "S2", "S3"
), Value = c("517.50760307564053", "1235.3088913918129", "2141.6841816176966",
"-958.38836859580044", "-1129.5593769492507", "-137.68477107274975",
"-296.07559218703756", "1092.0390648120747", "1156.2866848179935",
"-1975.0222255105061", "-2549.8125184965966", "-2608.2434152116011"
), Key = c("Actuals Sales", "Actuals Sales", "Actuals Sales",
"Actuals Sales", "Actuals Sales", "Actuals Sales", "Quarter Sales",
"Quarter Sales", "Quarter Sales", "Quarter Sales", "Quarter Sales",
"Quarter Sales")), .Names = c("Segment", "Product", "Value",
"Key"), row.names = c(NA, -12L), class = "data.frame")
Upvotes: 1
Views: 438
Reputation: 111
I would do it with the data.table package and generate 2 tables and merge them afterwards.
I hope this code helps you.
library(data.table)
#"test" is your data frame input
test <- data.table(test)
a <- test[Key=="ActualsSales",.(Segment=Segment, Product=Product, ActualsSales=Value)]
b <- test[Key=="QuarterSales",.(Segment=Segment, Product=Product, QuarterSales=Value)]
output <- merge(a,b, by=c("Segment","Product"))
print(output)
Upvotes: 1
Reputation: 26218
Your sample data actually contains some white spaces, after removing these the pivot_wider
along with its argument id_cols
works like a charm
data <- structure(list(Segment = c("non-domestic", "non-domestic", "non-domestic",
"domestic", "domestic", "domestic", "non-domestic", "non-domestic",
"non-domestic", "domestic", "domestic", "domestic"), Product = c("S1",
"S2", "S3", "S1", "S2", "S3", "S1", "S2", "S3", "S1", "S2", "S3"
), Value = c("517.50760307564053", "1235.3088913918129", "2141.6841816176966",
"-958.38836859580044", "-1129.5593769492507", "-137.68477107274975",
"-296.07559218703756", "1092.0390648120747", "1156.2866848179935",
"-1975.0222255105061", "-2549.8125184965966", "-2608.2434152116011"
), Key = c("Actuals Sales", "Actuals Sales", "Actuals Sales",
"Actuals Sales", "Actuals Sales", "Actuals Sales", "Quarter Sales",
"Quarter Sales", "Quarter Sales", "Quarter Sales", "Quarter Sales",
"Quarter Sales")), .Names = c("Segment", "Product", "Value",
"Key"), row.names = c(NA, -12L), class = "data.frame")
library(tidyr)
data %>% pivot_wider(names_from = Key, values_from = Value, id_cols = c(Segment, Product))
#> # A tibble: 6 x 4
#> Segment Product `Actuals Sales` `Quarter Sales`
#> <chr> <chr> <chr> <chr>
#> 1 non-domestic S1 517.50760307564053 -296.07559218703756
#> 2 non-domestic S2 1235.3088913918129 1092.0390648120747
#> 3 non-domestic S3 2141.6841816176966 1156.2866848179935
#> 4 domestic S1 -958.38836859580044 -1975.0222255105061
#> 5 domestic S2 -1129.5593769492507 -2549.8125184965966
#> 6 domestic S3 -137.68477107274975 -2608.2434152116011
Still, if your actual data also contains white spaces you can use stringr::str_trim()
before pivoting.
data <- structure(list(Segment = c("non-domestic", "non-domestic", "non-domestic",
"domestic", "domestic", "domestic", "non-domestic ", "non-domestic ",
"non-domestic ", "domestic ", "domestic ", "domestic "), Product = c("S1",
"S2", "S3", "S1", "S2", "S3", "S1", "S2", "S3", "S1", "S2", "S3"
), Value = c("517.50760307564053", "1235.3088913918129", "2141.6841816176966",
"-958.38836859580044", "-1129.5593769492507", "-137.68477107274975",
"-296.07559218703756", "1092.0390648120747", "1156.2866848179935",
"-1975.0222255105061", "-2549.8125184965966", "-2608.2434152116011"
), Key = c("Actuals Sales", "Actuals Sales", "Actuals Sales",
"Actuals Sales", "Actuals Sales", "Actuals Sales", "Quarter Sales",
"Quarter Sales", "Quarter Sales", "Quarter Sales", "Quarter Sales",
"Quarter Sales")), .Names = c("Segment", "Product", "Value",
"Key"), row.names = c(NA, -12L), class = "data.frame")
library(tidyverse)
data %>% mutate(Segment = str_trim(Segment)) %>%
pivot_wider(names_from = Key, values_from = Value, id_cols = c(Segment, Product))
#> # A tibble: 6 x 4
#> Segment Product `Actuals Sales` `Quarter Sales`
#> <chr> <chr> <chr> <chr>
#> 1 non-domestic S1 517.50760307564053 -296.07559218703756
#> 2 non-domestic S2 1235.3088913918129 1092.0390648120747
#> 3 non-domestic S3 2141.6841816176966 1156.2866848179935
#> 4 domestic S1 -958.38836859580044 -1975.0222255105061
#> 5 domestic S2 -1129.5593769492507 -2549.8125184965966
#> 6 domestic S3 -137.68477107274975 -2608.2434152116011
Created on 2021-06-11 by the reprex package (v2.0.0)
Upvotes: 2
Reputation: 1089
qs <- df$Value[df$Key == 'Quarter Sales']
as <- df$Value[df$Key == 'Actuals Sales']
df$QS <- c(qs, rep(NA, length(qs)))
df$AS <- c(as, rep(NA, length(as)))
df$Key <- NULL
df <- df[complete.cases(df),]
Upvotes: 0
Reputation: 101383
A base R option using reshape
reshape(
transform(data, Segment = trimws(Segment)),
direction = "wide",
idvar = c("Segment", "Product"),
timevar = "Key"
)
gives
Segment Product Value.Actuals Sales Value.Quarter Sales
1 non-domestic S1 517.50760307564053 -296.07559218703756
2 non-domestic S2 1235.3088913918129 1092.0390648120747
3 non-domestic S3 2141.6841816176966 1156.2866848179935
4 domestic S1 -958.38836859580044 -1975.0222255105061
5 domestic S2 -1129.5593769492507 -2549.8125184965966
6 domestic S3 -137.68477107274975 -2608.2434152116011
Upvotes: 2
Reputation: 27732
remove the unneeded spaces (trimws()
) and the cast to wide
library(data.table)
dcast(setDT(mydata), trimws(Segment) + Product ~ Key, value.var = "Value", fill = NA)
# Segment Product Actuals Sales Quarter Sales
# 1: domestic S1 -958.38836859580044 -1975.0222255105061
# 2: domestic S2 -1129.5593769492507 -2549.8125184965966
# 3: domestic S3 -137.68477107274975 -2608.2434152116011
# 4: non-domestic S1 517.50760307564053 -296.07559218703756
# 5: non-domestic S2 1235.3088913918129 1092.0390648120747
# 6: non-domestic S3 2141.6841816176966 1156.2866848179935
Upvotes: 2