Reputation: 353
I am probably having a failry easy question but cannnot figure it out.
I am having a dataset that has two variables, both factors. It looks like this:
my.data<-data.frame(name=c("a","a","b","b","b","b", "b", "b", "e", "e", "e"),
var1=c(1, 2, 3, 4, 2, 1, 4, 1, 3, 4, 3))
I would like to calculate the frequency of 1,2,3 and 4 for all a, b and e aggregated later into one row. That means that all "a", "b" and "e" should be in one row and then I would like to create 4 variables which will indicate the frequency of all 1,2,3 and 4 across these rows. I have managed to calculate the frequencies for all counts of "a", "b" and "e" but I can't collapse all the "a", "b" and "e" into seperate rows.
My code is this one:
a <- my.data %>%
dplyr:: select(name, var1) %>%
mutate(name = as.factor(name),
var1 = as.factor(var1)) %>%
group_by(name, var1) %>%
summarise(n = n()) %>%
mutate(freq = n / sum(n))
My results should look like this:
name Freq1 Freq2 Freq3 Freq4
a 0,00 0,00 0,5 0,5
b 0,30 0,30 0,30 0,10
e 0,20 0,20 0,20 0,40
Thanks.
Upvotes: 3
Views: 2028
Reputation: 21938
We can also make use of package janitor
to great advantage here:
library(janitor)
my.data %>%
tabyl(name, var1) %>%
adorn_percentages()
name 1 2 3 4
a 0.5000000 0.5000000 0.0000000 0.0000000
b 0.3333333 0.1666667 0.1666667 0.3333333
e 0.0000000 0.0000000 0.6666667 0.3333333
OR
my.data %>%
tabyl(name, var1) %>%
adorn_percentages() %>%
adorn_totals(c('row', 'col')) %>%
adorn_pct_formatting(2)
name 1 2 3 4 Total
a 50.00% 50.00% 0.00% 0.00% 100.00%
b 33.33% 16.67% 16.67% 33.33% 100.00%
e 0.00% 0.00% 66.67% 33.33% 100.00%
Total 83.33% 66.67% 83.33% 66.67% 300.00%
Upvotes: 3
Reputation: 2636
You could also use base R's
prop.table(table(my.data), 1)
returning
var1
name 1 2 3 4
a 0.5000000 0.5000000 0.0000000 0.0000000
b 0.3333333 0.1666667 0.1666667 0.3333333
e 0.0000000 0.0000000 0.6666667 0.3333333
Upvotes: 3
Reputation: 5232
library(purrr)
my.data %>%
split(.$name) %>%
{cbind(name = names(.), map_dfr(., ~pluck(.x, "var1") %>% table() %>% prop.table()))}
name 1 2 3 4
1 a 0.5000000 0.5000000 NA NA
2 b 0.3333333 0.1666667 0.1666667 0.3333333
3 e NA NA 0.6666667 0.3333333
Upvotes: 0
Reputation: 389325
You can use pivot_wider
to bring the data in wide format -
library(dplyr)
library(tidyr)
my.data %>%
count(name, var1) %>%
group_by(name) %>%
mutate(n = prop.table(n)) %>%
ungroup %>%
pivot_wider(names_from = var1, values_from = n, names_prefix = 'Freq')
# name Freq1 Freq2 Freq3 Freq4
# <chr> <dbl> <dbl> <dbl> <dbl>
#1 a 0.5 0.5 NA NA
#2 b 0.333 0.167 0.167 0.333
#3 e NA NA 0.667 0.333
Upvotes: 0