Reputation: 47
I am trying to sort the values of my columns depending on the date (d/m/y + hour: min: sec). Below I will show you an example of the format of the given data:
Initiator | Price | date |
---|---|---|
XXX | 560 | 13/05/2020 11:05:35 |
Glovoapp | 250 | 12/05/2020 13:07:15 |
Glovoapp | 250 | 13/04/2020 12:09:25 |
expected output:
if the user selects a date from the 10/04/2020 | 00:00:00 to 15/05/2020 |00:00:00 :
Glovoapp: 500
XXX: 560
if the user selects a date from the 10/04/2020 00:00:00 to 01/05/2020 00:00:00:
Glovoapp: 250
So far I am able to sum the prices depending on the initiators without the date filtering. Any suggestions on what I should do ?
def sum_method(self):
montant_init = self.data.groupby("Initiateur")["Montant (centimes)"].sum()
print(montant_init)
return montant_init
^ I use this method for the calculation. I hope I am clear enough and thanks.
Tried answer; please correct me:
class evaluation():
def __init__(self, df):
self.df = df
# Will receive 'actual' datetime from df, and user defined 'start' and 'stop' datetimes.
def in_range(actual, start, stop):
return start <= actual <= stop
def evaluate(self):
user_start = input("Enter your start date (dd.mm.yyyy hour:min:second): ")
user_stop = input("Enter your end date (dd.mm.yyyy hour:min:second): ")
# creates series of True or False selecting proper rows.
mask = self.df['Date'].apply(self.in_range, args=(user_start, user_stop))
# Do the groupby and sum on only those rows.
montant_init = self.df.loc[mask].groupby("Initiateur")["Montant (centimes)"].sum()
print(montant_init)
output when printing: self.df.loc[mask]
Empty DataFrame
Columns: [Opération, Initiateur, Montant (centimes), Monnaie, Date, Résultat, Compte marchand, Adresse IP Acheteur, Marque de carte]
Index: []
Upvotes: 1
Views: 200
Reputation: 2585
The below works. There are two steps:
Mask function:
# Will receive 'actual' datetime from df, and user defined 'start' and 'stop' datetimes.
def in_range(actual, start, stop):
return start <= actual <= stop
Then apply the mask and perform the groupby:
# creates series of True or False selecting proper rows.
mask = df['date'].apply(in_range, args=(user_start, user_stop))
# Do the groupby and sum on only those rows.
df2 = df.loc[mask].groupby('Initiator').sum()
Note that user_start
and user_stop
should be the defined start and stop datetimes by the user.
And you're done!
UPDATE: to include the methods as part of a class:
class evaluation():
def __init__(self, df):
self.df = df
# Will receive 'actual' datetime from df, and user defined 'start' and 'stop' datetimes. Add 'self' as arg in method.
def in_range(self, actual, start, stop):
return start <= actual <= stop
def evaluate(self):
user_start = pd.to_datetime(input("Enter your start date (yyyy.mm.dd hour:min:second): "))
user_stop = pd.to_datetime(input("Enter your end date (yyyy.mm.dd hour:min:second): "))
# creates series of True or False selecting proper rows.
mask = self.df['Date'].apply(self.in_range, args=(user_start, user_stop))
# Do the groupby and sum on only those rows.
amount_init = self.df.loc[mask].groupby("Initiator")["Price"].sum()
print(amount_init)
Then to instantiate an object of the new class:
import pandas as pd
import dateutil.parser as dtp
import evaluation as eval # this is the class we just made
data = {
'Initiator': ['XXX', 'Glovoapp', 'Glovoapp'],
'Price': [560, 250, 250],
'Date': [dtp.parse('13/05/2020 11:05:35'), dtp.parse('12/05/2020 13:07:15'), dtp.parse('13/04/2020 12:09:25')]
}
df = pd.DataFrame(data)
eval_obj = eval.evaluation(df)
eval_obj.evaluate()
Upvotes: 1