Reputation: 3345
I have three .snappy.parquet
files stored in an s3 bucket, I tried to use pandas.read_parquet()
but it only work when I specify one single parquet file, e.g: df = pandas.read_parquet("s3://bucketname/xxx.snappy.parquet")
, but if I don't specify the filename df = pandas.read_parquet("s3://bucketname")
, this won't work and it gave me error: Seek before start of file
.
I did a lot of reading, then I found this page
it suggests that we can use pyarrow
to read multiple parquet files, so here's what I tried:
import s3fs
import import pyarrow.parquet as pq
s3 = s3fs.S3FileSystem()
bucket_uri = f's3://bucketname'
data = pq.ParquetDataset(bucket_uri, filesystem=s3)
df = data.read().to_pandas()
This works, but I found that the value for one of the columns in thie df
is a dictionary, how can I decode this dictionary and the selected key
as column names and value
as the corresponding values?
For example, the current column:
column_1
{'Id': 'xxxxx', 'name': 'xxxxx','age': 'xxxxx'....}
The expected column:
Id age
xxx xxx
xxx xxx
Here's the output for data.read().schema
:
column_0: string
-- field metadata --
PARQUET:field_id: '1'
column_1: struct<Id: string, name: string, age: string,.......>
child 0, Id: string
-- field metadata --
PARQUET:field_id: '3'
child 1, name: string
-- field metadata --
PARQUET:field_id: '7'
child 2, age: string
-- field metadata --
PARQUET:field_id: '8'
...........
...........
Upvotes: 0
Views: 2299
Reputation: 13902
You have a column with a "struct type" and you want to flatten it. To do so call flatten before calling to_pandas
import pyarrow as pa
COLUMN1_SCHEMA = pa.struct([('Id', pa.string()), ('Name', pa.string()), ('Age', pa.string())])
SCHEMA = pa.schema([("column1", COLUMN1_SCHEMA), ('column2', pa.int32())])
df = pd.DataFrame({
"column1": [("1", "foo", "16"), ("2", "bar", "17"), ],
"column2": [1, 2],
})
pa.Table.from_pandas(df, SCHEMA).to_pandas() # without flatten
| column1 | column2 |
|:----------------------------------------|----------:|
| {'Id': '1', 'Name': 'foo', 'Age': '16'} | 1 |
| {'Id': '2', 'Name': 'bar', 'Age': '17'} | 2 |
pa.Table.from_pandas(df, SCHEMA).flatten().to_pandas() # with flatten
| column1.Id | column1.Name | column1.Age | column2 |
|-------------:|:---------------|--------------:|----------:|
| 1 | foo | 16 | 1 |
| 2 | bar | 17 | 2 |
As a side note, you shoulnd't call it a dictionary
column. dictionary
is loaded term in pyarrow, and usually refer to distionary encoding
Edit: how to read a subset of columns in parquet
import pyarrow.parquet as pq
table = pa.Table.from_pandas(df, SCHEMA)
pq.write_table(table, 'data.pq')
# Using read_table:
pq.read_table('data.pq', columns=['column1.Id', 'column1.Age'])
# Using ParquetDataSet:
pq.ParquetDataset('data.pq').read(columns=['column1.Id', 'column1.Age'])
Upvotes: 2