Reputation: 59
I've been attempting to create a node class which mimics a node on a graph. Currently, storage of the predecessor and successor nodes are stored via a node pointer vector: std::vector<Node*> previous
. The vectors for the predecessor/successor nodes are private variables and are accessible via setters/getters.
Currently, I am dealing with updating the pointer values when adding a new node. My current method to update the predecessor/successor nodes is through this method (the method is the same for successor/previous nodes, just name changes):
void set_next(std::vector<Node*> new_next) {
this->next.clear();
for (Node* node : new_next) {
this->next.push_back(node);
}
}
This works for the current node but I was wondering the best way to update the new_next
nodes that are passed in, especially the most 'C++'-esque way to accomplish this. I have previously written a method which adds individual nodes to the successor/predecessor vector:
void add_next(Node* new_node, bool one_way = false) {
this->next.pushback(new_node);
if (!one_way) {
new_node->add_prev(this, one_way = true);
}
}
The one_way
variable was used to determine the depth(?) of the add_next() call. If it is true, it will add to the successor set and then add to the predecessor set of new_node. Since the boolean value is set to false when the new_node->add_next() method call occurs, it will only add to the predecessor set and not attempt to call add_next()/add_prev() again. This solution does work, but I'd rather not have the one_way
variable and would prefer that the method would be private.
Here is the structure of the class currently:
class Node {
private:
std::vector<Node*> previous;
std::vector<Node*> next;
boost::any data;
public:
std::vector<Node*> get_previous()
void set_previous(std::vector<Node*> new_previous)
std::vector<Node*> get_next()
void set_next(std::vector<Node*> new_next)
void add_prev(Node* new_node, bool one_way = false)
void add_next(Node* new_node, bool one_way = false)
}
Avoiding the one_way
parameter, it seems my best solution would be to just create an add_next/add_prev method that only updates the current node, not the passed node, unlike the solution above. With this solution, when adding new nodes, I could call the inverse of the add_next/add_prev on the new node. However, I have an inkling there may be a better solution for this.
Thank you!
Upvotes: 0
Views: 71
Reputation: 101
I think this should get you going (edge-cases left to you to figure out, if any):
template<typename T>
class Node {
// Everything made public for debugging purposes, change this to fit your needs
public:
std::vector<Node<T>*> previous;
std::vector<Node<T>*> next;
T data;
Node(T val) {
data = val;
}
void set_next(std::vector<Node<T>*>& new_next);
};
template<typename T>
void Node<T>::set_next(std::vector<Node<T>*>& new_next) {
next = new_next;
for (Node<T>* node : new_next)
node->previous.push_back(this);
}
int main() {
// Little proof of concept where 0 is parent to 1, 2, 3
Node<int> one = 1;
Node<int> two = 2;
Node<int> three = 3;
Node<int> zero = 0;
std::vector<Node<int>*> new_next = { &one , &two, &three };
zero.set_next(new_next);
return 0;
}
To sum up the differences:
boost::any
is non standard and is all around terrible for this task.=
makes a copy of std::vector
s).Upvotes: 1