Reputation: 5879
I have two vectors as Python lists and an angle. E.g.:
v = [3, 5, 0]
axis = [4, 4, 1]
theta = 1.2 # In radians.
What is the best/easiest way to get the resulting vector when rotating the v
vector around the axis
?
The rotation should appear to be counter clockwise for an observer to whom the axis
vector is pointing. This is called the right hand rule
Upvotes: 89
Views: 172517
Reputation: 751
Using pyquaternion is extremely simple; to install it (while still in python), run in your console:
import pip;
pip.main(['install','pyquaternion'])
Once installed:
from pyquaternion import Quaternion
v = [3,5,0]
axis = [4,4,1]
theta = 1.2 #radian
rotated_v = Quaternion(axis=axis,angle=theta).rotate(v)
Upvotes: 3
Reputation: 5696
Use scipy's Rotation.from_rotvec()
. The argument is the rotation vector (a unit vector) multiplied by the rotation angle in rads.
from scipy.spatial.transform import Rotation
from numpy.linalg import norm
v = [3, 5, 0]
axis = [4, 4, 1]
theta = 1.2
axis = axis / norm(axis) # normalize the rotation vector first
rot = Rotation.from_rotvec(theta * axis)
new_v = rot.apply(v)
print(new_v) # results in [2.74911638 4.77180932 1.91629719]
There are several more ways to use Rotation
based on what data you have about the rotation:
from_quat
Initialized from quaternions.
from_dcm
Initialized from direction cosine matrices.
from_euler
Initialized from Euler angles.
Off-topic note: One line code is not necessarily better code as implied by some users.
Upvotes: 15
Reputation: 163
It can also be solved using quaternion theory:
def angle_axis_quat(theta, axis):
"""
Given an angle and an axis, it returns a quaternion.
"""
axis = np.array(axis) / np.linalg.norm(axis)
return np.append([np.cos(theta/2)],np.sin(theta/2) * axis)
def mult_quat(q1, q2):
"""
Quaternion multiplication.
"""
q3 = np.copy(q1)
q3[0] = q1[0]*q2[0] - q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3]
q3[1] = q1[0]*q2[1] + q1[1]*q2[0] + q1[2]*q2[3] - q1[3]*q2[2]
q3[2] = q1[0]*q2[2] - q1[1]*q2[3] + q1[2]*q2[0] + q1[3]*q2[1]
q3[3] = q1[0]*q2[3] + q1[1]*q2[2] - q1[2]*q2[1] + q1[3]*q2[0]
return q3
def rotate_quat(quat, vect):
"""
Rotate a vector with the rotation defined by a quaternion.
"""
# Transfrom vect into an quaternion
vect = np.append([0],vect)
# Normalize it
norm_vect = np.linalg.norm(vect)
vect = vect/norm_vect
# Computes the conjugate of quat
quat_ = np.append(quat[0],-quat[1:])
# The result is given by: quat * vect * quat_
res = mult_quat(quat, mult_quat(vect,quat_)) * norm_vect
return res[1:]
v = [3, 5, 0]
axis = [4, 4, 1]
theta = 1.2
print(rotate_quat(angle_axis_quat(theta, axis), v))
# [2.74911638 4.77180932 1.91629719]
Upvotes: 3
Reputation: 2830
Disclaimer: I am the author of this package
While special classes for rotations can be convenient, in some cases one needs rotation matrices (e.g. for working with other libraries like the affine_transform functions in scipy). To avoid everyone implementing their own little matrix generating functions, there exists a tiny pure python package which does nothing more than providing convenient rotation matrix generating functions. The package is on github (mgen) and can be installed via pip:
pip install mgen
Example usage copied from the readme:
import numpy as np
np.set_printoptions(suppress=True)
from mgen import rotation_around_axis
from mgen import rotation_from_angles
from mgen import rotation_around_x
matrix = rotation_from_angles([np.pi/2, 0, 0], 'XYX')
matrix.dot([0, 1, 0])
# array([0., 0., 1.])
matrix = rotation_around_axis([1, 0, 0], np.pi/2)
matrix.dot([0, 1, 0])
# array([0., 0., 1.])
matrix = rotation_around_x(np.pi/2)
matrix.dot([0, 1, 0])
# array([0., 0., 1.])
Note that the matrices are just regular numpy arrays, so no new data-structures are introduced when using this package.
Upvotes: 2
Reputation: 27574
I needed to rotate a 3D model around one of the three axes {x, y, z} in which that model was embedded and this was the top result for a search of how to do this in numpy. I used the following simple function:
def rotate(X, theta, axis='x'):
'''Rotate multidimensional array `X` `theta` degrees around axis `axis`'''
c, s = np.cos(theta), np.sin(theta)
if axis == 'x': return np.dot(X, np.array([
[1., 0, 0],
[0 , c, -s],
[0 , s, c]
]))
elif axis == 'y': return np.dot(X, np.array([
[c, 0, -s],
[0, 1, 0],
[s, 0, c]
]))
elif axis == 'z': return np.dot(X, np.array([
[c, -s, 0 ],
[s, c, 0 ],
[0, 0, 1.],
]))
Upvotes: 1
Reputation: 18628
A one-liner, with numpy/scipy functions.
We use the following:
let a be the unit vector along axis, i.e. a = axis/norm(axis)
and A = I × a be the skew-symmetric matrix associated to a, i.e. the cross product of the identity matrix with athen M = exp(θ A) is the rotation matrix.
from numpy import cross, eye, dot
from scipy.linalg import expm, norm
def M(axis, theta):
return expm(cross(eye(3), axis/norm(axis)*theta))
v, axis, theta = [3,5,0], [4,4,1], 1.2
M0 = M(axis, theta)
print(dot(M0,v))
# [ 2.74911638 4.77180932 1.91629719]
expm
(code here) computes the taylor series of the exponential:
\sum_{k=0}^{20} \frac{1}{k!} (θ A)^k
, so it's time expensive, but readable and secure.
It can be a good way if you have few rotations to do but a lot of vectors.
Upvotes: 57
Reputation: 449
Here is an elegant method using quaternions that are blazingly fast; I can calculate 10 million rotations per second with appropriately vectorised numpy arrays. It relies on the quaternion extension to numpy found here.
Quaternion Theory:
A quaternion is a number with one real and 3 imaginary dimensions usually written as q = w + xi + yj + zk
where 'i', 'j', 'k' are imaginary dimensions. Just as a unit complex number 'c' can represent all 2d rotations by c=exp(i * theta)
, a unit quaternion 'q' can represent all 3d rotations by q=exp(p)
, where 'p' is a pure imaginary quaternion set by your axis and angle.
We start by converting your axis and angle to a quaternion whose imaginary dimensions are given by your axis of rotation, and whose magnitude is given by half the angle of rotation in radians. The 4 element vectors (w, x, y, z)
are constructed as follows:
import numpy as np
import quaternion as quat
v = [3,5,0]
axis = [4,4,1]
theta = 1.2 #radian
vector = np.array([0.] + v)
rot_axis = np.array([0.] + axis)
axis_angle = (theta*0.5) * rot_axis/np.linalg.norm(rot_axis)
First, a numpy array of 4 elements is constructed with the real component w=0 for both the vector to be rotated vector
and the rotation axis rot_axis
. The axis angle representation is then constructed by normalizing then multiplying by half the desired angle theta
. See here for why half the angle is required.
Now create the quaternions v
and qlog
using the library, and get the unit rotation quaternion q
by taking the exponential.
vec = quat.quaternion(*v)
qlog = quat.quaternion(*axis_angle)
q = np.exp(qlog)
Finally, the rotation of the vector is calculated by the following operation.
v_prime = q * vec * np.conjugate(q)
print(v_prime) # quaternion(0.0, 2.7491163, 4.7718093, 1.9162971)
Now just discard the real element and you have your rotated vector!
v_prime_vec = v_prime.imag # [2.74911638 4.77180932 1.91629719] as a numpy array
Note that this method is particularly efficient if you have to rotate a vector through many sequential rotations, as the quaternion product can just be calculated as q = q1 * q2 * q3 * q4 * ... * qn and then the vector is only rotated by 'q' at the very end using v' = q * v * conj(q).
This method gives you a seamless transformation between axis angle <---> 3d rotation operator simply by exp
and log
functions (yes log(q)
just returns the axis-angle representation!). For further clarification of how quaternion multiplication etc. work, see here
Upvotes: 17
Reputation: 879103
Using the Euler-Rodrigues formula:
import numpy as np
import math
def rotation_matrix(axis, theta):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians.
"""
axis = np.asarray(axis)
axis = axis / math.sqrt(np.dot(axis, axis))
a = math.cos(theta / 2.0)
b, c, d = -axis * math.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
v = [3, 5, 0]
axis = [4, 4, 1]
theta = 1.2
print(np.dot(rotation_matrix(axis, theta), v))
# [ 2.74911638 4.77180932 1.91629719]
Upvotes: 135
Reputation: 103
I made a fairly complete library of 3D mathematics for Python{2,3}. It still does not use Cython, but relies heavily on the efficiency of numpy. You can find it here with pip:
python[3] -m pip install math3d
Or have a look at my gitweb http://git.automatics.dyndns.dk/?p=pymath3d.git and now also on github: https://github.com/mortlind/pymath3d .
Once installed, in python you may create the orientation object which can rotate vectors, or be part of transform objects. E.g. the following code snippet composes an orientation that represents a rotation of 1 rad around the axis [1,2,3], applies it to the vector [4,5,6], and prints the result:
import math3d as m3d
r = m3d.Orientation.new_axis_angle([1,2,3], 1)
v = m3d.Vector(4,5,6)
print(r * v)
The output would be
<Vector: (2.53727, 6.15234, 5.71935)>
This is more efficient, by a factor of approximately four, as far as I can time it, than the oneliner using scipy posted by B. M. above. However, it requires installation of my math3d package.
Upvotes: 9
Reputation: 6552
I just wanted to mention that if speed is required, wrapping unutbu's code in scipy's weave.inline and passing an already existing matrix as a parameter yields a 20-fold decrease in the running time.
The code (in rotation_matrix_test.py):
import numpy as np
import timeit
from math import cos, sin, sqrt
import numpy.random as nr
from scipy import weave
def rotation_matrix_weave(axis, theta, mat = None):
if mat == None:
mat = np.eye(3,3)
support = "#include <math.h>"
code = """
double x = sqrt(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
double a = cos(theta / 2.0);
double b = -(axis[0] / x) * sin(theta / 2.0);
double c = -(axis[1] / x) * sin(theta / 2.0);
double d = -(axis[2] / x) * sin(theta / 2.0);
mat[0] = a*a + b*b - c*c - d*d;
mat[1] = 2 * (b*c - a*d);
mat[2] = 2 * (b*d + a*c);
mat[3*1 + 0] = 2*(b*c+a*d);
mat[3*1 + 1] = a*a+c*c-b*b-d*d;
mat[3*1 + 2] = 2*(c*d-a*b);
mat[3*2 + 0] = 2*(b*d-a*c);
mat[3*2 + 1] = 2*(c*d+a*b);
mat[3*2 + 2] = a*a+d*d-b*b-c*c;
"""
weave.inline(code, ['axis', 'theta', 'mat'], support_code = support, libraries = ['m'])
return mat
def rotation_matrix_numpy(axis, theta):
mat = np.eye(3,3)
axis = axis/sqrt(np.dot(axis, axis))
a = cos(theta/2.)
b, c, d = -axis*sin(theta/2.)
return np.array([[a*a+b*b-c*c-d*d, 2*(b*c-a*d), 2*(b*d+a*c)],
[2*(b*c+a*d), a*a+c*c-b*b-d*d, 2*(c*d-a*b)],
[2*(b*d-a*c), 2*(c*d+a*b), a*a+d*d-b*b-c*c]])
The timing:
>>> import timeit
>>>
>>> setup = """
... import numpy as np
... import numpy.random as nr
...
... from rotation_matrix_test import rotation_matrix_weave
... from rotation_matrix_test import rotation_matrix_numpy
...
... mat1 = np.eye(3,3)
... theta = nr.random()
... axis = nr.random(3)
... """
>>>
>>> timeit.repeat("rotation_matrix_weave(axis, theta, mat1)", setup=setup, number=100000)
[0.36641597747802734, 0.34883809089660645, 0.3459300994873047]
>>> timeit.repeat("rotation_matrix_numpy(axis, theta)", setup=setup, number=100000)
[7.180983066558838, 7.172032117843628, 7.180462837219238]
Upvotes: 22
Reputation: 176730
Take a look at http://vpython.org/contents/docs/visual/VisualIntro.html.
It provides a vector
class which has a method A.rotate(theta,B)
. It also provides a helper function rotate(A,theta,B)
if you don't want to call the method on A
.
http://vpython.org/contents/docs/visual/vector.html
Upvotes: 13