Reputation: 179
I have the following df:
df = pd.DataFrame(columns=['Place', 'PLZ','shortName','Parzellen'])
new_row1 = {'Place':'Winterthur', 'PLZ':[8400, 8401, 8402, 8404, 8405, 8406, 8407, 8408, 8409, 8410, 8411], 'shortName':'WIN', 'Parzellen':[]}
new_row2 = {'Place':'Opfikon', 'PLZ':[8152], 'shortName':'OPF', 'Parzellen':[]}
new_row3 = {'Place':'Stadel', 'PLZ':[8174], 'shortName':'STA', 'Parzellen':[]}
new_row4 = {'Place':'Kloten', 'PLZ':[8302], 'shortName':'KLO', 'Parzellen':[]}
new_row5 = {'Place':'Niederhasli', 'PLZ':[8155,8156], 'shortName':'NIH', 'Parzellen':[]}
new_row6 = {'Place':'Bassersdorf', 'PLZ':[8303], 'shortName':'BAS', 'Parzellen':[]}
new_row7 = {'Place':'Oberglatt', 'PLZ':[8154], 'shortName':'OBE', 'Parzellen':[]}
new_row8 = {'Place':'Bülach', 'PLZ':[8180], 'shortName':'BUE', 'Parzellen':[]}
df = df.append(new_row1, ignore_index=True)
df = df.append(new_row2, ignore_index=True)
df = df.append(new_row3, ignore_index=True)
df = df.append(new_row4, ignore_index=True)
df = df.append(new_row5, ignore_index=True)
df = df.append(new_row6, ignore_index=True)
df = df.append(new_row7, ignore_index=True)
df = df.append(new_row8, ignore_index=True)
print (df)
Now I have a number like 8405 and I want to know the Place or whole Row which has this number under df['PLZ']
.
I also tried with classes but it was hard to get all Numbers of all Objects because I want to be able to call all PLZ in a list and also check, if I have any number, to which Place it belongs. Maybe there is an obvious better way and I just don't know it.
Upvotes: 1
Views: 1599
Reputation: 24314
try with boolean masking and map()
method:
df[df['PLZ'].map(lambda x:8405 in x)]
OR
via boolean masking and agg()
method:
df[df['PLZ'].agg(lambda x:8405 in x)]
#you can also use apply() in place of agg
output of above code:
Place PLZ shortName Parzellen
0 Winterthur [8400, 8401, 8402, 8404, 8405, 8406, 8407, 840... WIN []
Upvotes: 3