Reputation: 39
I am new to spark and learning as I go.
I have this spark data frame. I want to order by date and get the latest record partitioned by 'ID1', 'ID2', and 'record_type'.
My input is like
data = [
("ACC.PXP", "7246", "2018-10-18T16:20:00", "Hospital", None, "IN"),
("ACC.PXP", "7246", "2018-10-18T16:20:00", None, "Foundation", "IN"),
("ACC.PXP", "7246", "2018-11-10T00:00:00", "Hospital", "Foundation", "IN"),
("ACC.PXP", "7246", "2018-11-11T00:00:00", None, "Washington", "OUT"),
("ACC.PXP", "7246", "2018-11-12T00:00:00", "Hospital", None, "OUT"),
("ACC.PXP", "7246", "2018-11-15T04:00:00", "Home", None, "IN"),
("ACC.PXP", "7246", "2018-11-15T04:00:00", "Home", None, "IN"),
("ACC.PXP", "7246", "2020-12-04T15:00:00", "Care", "Betel", "OUT"),
("ACC.PXP", "7246", "2020-13-04T15:00:00", "Care", None, "OUT"),
]
df = spark.createDataFrame(
data=data, schema=["ID1", "ID2", "date", "type", "name", "record_type"]
)
df.orderBy(F.col("date")).show(truncate=False)
+-------+----+-------------------+--------+----------+-----------+
|ID1 |ID2 |date |type |name |record_type|
+-------+----+-------------------+--------+----------+-----------+
|ACC.PXP|7246|2018-10-18T16:20:00|null |Foundation|IN |
|ACC.PXP|7246|2018-10-18T16:20:00|Hospital|null |IN |
|ACC.PXP|7246|2018-11-10T00:00:00|Hospital|Foundation|IN |
|ACC.PXP|7246|2018-11-11T00:00:00|null |Washington|OUT |
|ACC.PXP|7246|2018-11-12T00:00:00|Hospital|null |OUT |
|ACC.PXP|7246|2018-11-15T04:00:00|Home |null |IN |
|ACC.PXP|7246|2018-11-15T04:00:00|Home |null |IN |
|ACC.PXP|7246|2020-12-04T15:00:00|Care |Betel |OUT |
|ACC.PXP|7246|2020-13-04T15:00:00|Care |null |OUT |
+-------+----+-------------------+--------+----------+-----------+
... and my expected output will be like
data2 = [
("ACC.PXP", "7246", "2018-11-10T00:00:00", "Hospital", "Foundation", "IN"),
("ACC.PXP", "7246", "2018-11-12T00:00:00", "Hospital", "Washington", "OUT"),
("ACC.PXP", "7246", "2018-11-15T04:00:00", "Home", None, "IN"),
("ACC.PXP", "7246", "2020-13-04T15:00:00", "Care", "Betel", "OUT"),
]
sdf = spark.createDataFrame(
data=data2, schema=["ID1", "ID2", "date", "type", "name", "record_type"]
)
sdf.orderBy(F.col("date")).show(truncate=False)
+-------+----+-------------------+--------+----------+-----------+
|ID1 |ID2 |date |type |name |record_type|
+-------+----+-------------------+--------+----------+-----------+
|ACC.PXP|7246|2018-11-10T00:00:00|Hospital|Foundation|IN |
|ACC.PXP|7246|2018-11-12T00:00:00|Hospital|Washington|OUT |
|ACC.PXP|7246|2018-11-15T04:00:00|Home |null |IN |
|ACC.PXP|7246|2020-13-04T15:00:00|Care |Betel |OUT |
+-------+----+-------------------+--------+----------+-----------+
I tried this and it looks like it works for this sample dataset. However, the logic seems to only pick one 'IN' and one 'OUT' records when I tested the actual data. Any input is highly appreciated.
w2 = Window.partitionBy("ID1", "ID2", "type", "date").orderBy(F.desc("date"))
w3 = Window.partitionBy("ID1", "ID2", "type").orderBy(F.asc("date"))
w4 = Window.partitionBy("ID1", "ID2", "type").orderBy(F.desc("date"))
df1 = (
df.withColumn(
"type",
when(col("type").isNotNull(), col("type")).otherwise(
last("type", True).over(w1)
),
)
.withColumn(
"name",
when(col("name").isNotNull(), col("name")).otherwise(
last("name", True).over(w1)
),
)
.withColumn("row_number", F.row_number().over(w2))
.filter(F.col("row_number") == 1)
.drop("row_number")
)
df2 = (
df1.withColumn(
"type",
when(col("type").isNotNull(), col("type")).otherwise(
last("type", True).over(w3)
),
)
.withColumn(
"name",
when(col("name").isNotNull(), col("name")).otherwise(
F.last("name", True).over(w3)
),
)
.withColumn("GroupingSeq", F.row_number().over(w4))
.filter(F.col("GroupingSeq") == 1)
.drop("GroupingSeq")
)
df2.orderBy(F.asc("date")).show()
Upvotes: 0
Views: 88
Reputation: 15318
First, you need to assign a group id :
from pyspark.sql import functions as F, Window as W
df2 = (
df.withColumn(
"id",
F.when(
F.lag("record_type").over(W.partitionBy("ID1", "ID2").orderBy("date"))
== F.col("record_type"),
0,
).otherwise(1),
)
.withColumn("id", F.sum("id").over(W.partitionBy("ID1", "ID2").orderBy("date")))
)
df2.show()
+-------+----+-------------------+--------+----------+-----------+---+
| ID1| ID2| date| type| name|record_type| id|
+-------+----+-------------------+--------+----------+-----------+---+
|ACC.PXP|7246|2018-10-18T16:20:00|Hospital| null| IN| 1|
|ACC.PXP|7246|2018-10-18T16:20:00| null|Foundation| IN| 1|
|ACC.PXP|7246|2018-11-10T00:00:00|Hospital|Foundation| IN| 1|
|ACC.PXP|7246|2018-11-11T00:00:00| null|Washington| OUT| 2|
|ACC.PXP|7246|2018-11-12T00:00:00|Hospital| null| OUT| 2|
|ACC.PXP|7246|2018-11-15T04:00:00| Home| null| IN| 3|
|ACC.PXP|7246|2018-11-15T04:00:00| Home| null| IN| 3|
|ACC.PXP|7246|2020-12-04T15:00:00| Care| Betel| OUT| 4|
|ACC.PXP|7246|2020-13-04T15:00:00| Care| null| OUT| 4|
+-------+----+-------------------+--------+----------+-----------+---+
Then, you value the columns where there are nulls:
df3 = df2.withColumn(
"name",
F.coalesce(
F.col("name"),
F.max("name").over(W.partitionBy("ID1", "ID2", "id"))
)
).withColumn(
"type",
F.coalesce(
F.col("type"),
F.max("type").over(W.partitionBy("ID1", "ID2", "id"))
)
)
df3.show()
+-------+----+-------------------+--------+----------+-----------+---+
| ID1| ID2| date| type| name|record_type| id|
+-------+----+-------------------+--------+----------+-----------+---+
|ACC.PXP|7246|2018-10-18T16:20:00|Hospital|Foundation| IN| 1|
|ACC.PXP|7246|2018-10-18T16:20:00|Hospital|Foundation| IN| 1|
|ACC.PXP|7246|2018-11-10T00:00:00|Hospital|Foundation| IN| 1|
|ACC.PXP|7246|2018-11-11T00:00:00|Hospital|Washington| OUT| 2|
|ACC.PXP|7246|2018-11-12T00:00:00|Hospital|Washington| OUT| 2|
|ACC.PXP|7246|2018-11-15T04:00:00| Home| null| IN| 3|
|ACC.PXP|7246|2018-11-15T04:00:00| Home| null| IN| 3|
|ACC.PXP|7246|2020-12-04T15:00:00| Care| Betel| OUT| 4|
|ACC.PXP|7246|2020-13-04T15:00:00| Care| Betel| OUT| 4|
+-------+----+-------------------+--------+----------+-----------+---+
Finally, you select the "last" line for each tuple("ID1", "ID2", "id")
:
df4 = df3.withColumn(
"row",
F.row_number().over(W.partitionBy("ID1", "ID2", "id").orderBy(F.col("date").desc()))
).where("row=1").drop("row", "id")
df4.show()
+-------+----+-------------------+--------+----------+-----------+
| ID1| ID2| date| type| name|record_type|
+-------+----+-------------------+--------+----------+-----------+
|ACC.PXP|7246|2018-11-10T00:00:00|Hospital|Foundation| IN|
|ACC.PXP|7246|2018-11-12T00:00:00|Hospital|Washington| OUT|
|ACC.PXP|7246|2018-11-15T04:00:00| Home| null| IN|
|ACC.PXP|7246|2020-13-04T15:00:00| Care| Betel| OUT|
+-------+----+-------------------+--------+----------+-----------+
Upvotes: 1