Reputation: 835
I have trained a classifier and now trying to load it and run some predictions I am getting an error that is provided below
....
return self._conv_forward(input, self.weight, self.bias)
File "/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 439, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
TypeError: conv2d() received an invalid combination of arguments - got (list, Parameter, Parameter, tuple, tuple, tuple, int), but expected one of:
* (Tensor input, Tensor weight, Tensor bias, tuple of ints stride, tuple of ints padding, tuple of ints dilation, int groups)
didn't match because some of the arguments have invalid types: (list, Parameter, Parameter, tuple, tuple, tuple, int)
* (Tensor input, Tensor weight, Tensor bias, tuple of ints stride, str padding, tuple of ints dilation, int groups)
didn't match because some of the arguments have invalid types: (list, Parameter, Parameter, tuple, tuple, tuple, int)
Here is the code
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
Transformer - used to encode images
transformer = transforms.Compose([
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
])
Getting a file and converting to Tensor
def get_file_as_tensor(file_path):
with np.load(file_path) as f:
melspec_image_array = f['arr_0']
image = Image.fromarray(melspec_image_array, mode='RGB')
image_tensor = transformer(image).div_(255).float()
return image_tensor.clone().detach()
Prediction function that is on top of the stack because the error occures when I run model([tensor])
def predict(tensor, model):
yhat = model([tensor])
yhat = yhat.clone().detach()
return yhat
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.ReLU(),
nn.Dropout(0.5)
)
self._init_weights()
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = F.avg_pool2d(x, 2)
return x
class Classifier(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.conv = nn.Sequential(
ConvBlock(in_channels=3, out_channels=64),
ConvBlock(in_channels=64, out_channels=128),
ConvBlock(in_channels=128, out_channels=256),
ConvBlock(in_channels=256, out_channels=512),
)
self.fc = nn.Sequential(
nn.Dropout(0.4),
nn.Linear(512, 128),
nn.PReLU(),
#nn.BatchNorm1d(128),
nn.Dropout(0.2),
nn.Linear(128, num_classes),
)
def forward(self, x):
x = self.conv(x)
x = torch.mean(x, dim=3)
x, _ = torch.max(x, dim=2)
x = self.fc(x)
return x
PATH = "models/model.pt"
model = Classifier()
model.load_state_dict(torch.load(PATH))
model.eval()
cry_file_path = "processed_np/car_file.npz"
car_tensor = get_file_as_tensor(car_file_path)
no_car_file_path = "raw_negative_processed/nocar-1041.npz"
no_car_tensor = get_file_as_tensor(no_car_file_path)
car_prediction = predict(car_tensor, model)
no_cry_prediction = predict(no_car_tensor, model)
print("car", car_prediction)
print("no car", no_car_prediction)
The code is self explanatory but SO keeps asking for more text Would really appreciate some help as I am new to ML
Upvotes: 3
Views: 16878
Reputation: 6618
def predict(tensor, model):
yhat = model(tensor.unsqueeze(0))
yhat = yhat.clone().detach()
return yhat
You should use this method definition instead of yours.
Upvotes: 3
Reputation: 528
The error is about conv2d() function not module.
The only thing I can think of here is that your input data is incorrect. Make sure it is a tensor in a form of (B, C, H, W).
Upvotes: 0
Reputation: 114786
Why are you applying your model to [tensor]
, that is to a python list containing a single element tensor
?
You should apply your model to tensor
directly: model(tensor)
.
You might need to add a singleton "batch dimension" to tensor
. See this answer for more details.
Upvotes: 1