Reputation: 1644
I would like to perform Bayesian Logistic Regression using the bayestestR
and rstanarm
in R. The output, I believe, is in the log(odds ratio). Do you know of a way in which I can convert everything, i.e. the centrality, uncertainty, existence and significance indices into odds ratio instead. I know tbl_summary
function from gtsummary
package has an argument, exponentiate = TRUE
that returns everything in OR.
Code:
library(rstanarm)
library(bayestestR)
data <- iris %>%
filter(Species != "setosa") %>%
droplevels()
model <- stan_glm(Species ~ Sepal.Width, data = data, family = "binomial", refresh = 0)
describe_posterior(model)
# Summary of Posterior Distribution
#
# Parameter | Median | 95% CI | pd | ROPE | % in ROPE | Rhat | ESS
# ---------------------------------------------------------------------------------------------
# (Intercept) | -6.16 | [-10.46, -2.30] | 99.95% | [-0.18, 0.18] | 0% | 1.001 | 2842.00
# Sepal.Width | 2.15 | [ 0.83, 3.64] | 99.92% | [-0.18, 0.18] | 0% | 1.001 | 2799.00
Upvotes: 1
Views: 387
Reputation: 1673
I'd recommend using the parameters
package which uses bayestestR internally but is more flexible:
library(rstanarm)
library(bayestestR)
library(dplyr)
data <- iris %>%
filter(Species != "setosa") %>%
droplevels()
model <- stan_glm(Species ~ Sepal.Width, data = data, family = "binomial", refresh = 0)
parameters::parameters(model, exponentiate = TRUE)
#> # Fixed effects
#>
#> Parameter | Median | 89% CI | pd | % in ROPE | Rhat | ESS | Prior
#> --------------------------------------------------------------------------------------------------
#> (Intercept) | 2.20e-03 | [0.00, 0.06] | 99.90% | 0.02% | 1.000 | 2763.00 | Normal (0 +- 2.50)
#> Sepal.Width | 8.52 | [2.60, 25.63] | 99.90% | 0.12% | 1.000 | 2801.00 | Normal (0 +- 7.51)
#>
#> Using highest density intervals as credible intervals.
Created on 2021-06-29 by the reprex package (v2.0.0)
Upvotes: 2