Keverly
Keverly

Reputation: 518

Elegant way to convert Shapely Multipoint to a Pandas Dataframe

I need to convert a dict of Shapely MultiPoints to a dataframe. I've written a double-for-loop program to do that but I want to know if there's a better way of doing that.

Sample data and current code:

from shapely import wkb
import pandas as pd

data = {
    "A": "010400000002000000010100000000000000000008400000000000001440010100000000000000000008400000000000000840",
    "B": "01040000000200000001010000000000000000A061C00000000000A0894001010000000000000000708C400000000000C074C0",
    "C": "01040000000200000001010000000000000000EEB34000000000006CBB4001010000000000000000003E4000000000008DD3C0"
}

df = pd.DataFrame(columns=["ID", "X", "Y"])
for key, wkb_val in data.items():
    for point in wkb.loads(wkb_val, hex=True):
        df = df.append({
          "ID": key, "X": point.x, "Y": point.y  
        }, ignore_index=True)

This is effective if a little slow and clunky. Can this be done better, and if so how?

Upvotes: 3

Views: 1073

Answers (2)

Henry Ecker
Henry Ecker

Reputation: 35676

A list comprehension to build the a frame constructor is likely the best option here:

df = pd.DataFrame(
    [[k, point.x, point.y]
     for k, v in data.items()
     for point in wkb.loads(v, hex=True)],
    columns=['ID', 'X', 'Y']
)
  ID       X        Y
0  A     3.0      5.0
1  A     3.0      3.0
2  B  -141.0    820.0
3  B   910.0   -332.0
4  C  5102.0   7020.0
5  C    30.0 -20020.0

pandas operations here are going to be expensive especially append in a loop which will need to generate a copy of the DataFrame in each iteration.


Some Timing information via %timeit:

This Answer

def fn(data):
    return pd.DataFrame(
        [[k, point.x, point.y]
         for k, v in data.items()
         for point in wkb.loads(v, hex=True)],
        columns=['ID', 'X', 'Y']
    )
%timeit fn(data)
552 µs ± 11.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

OP's solution

def fn2(data):
    df = pd.DataFrame(columns=["ID", "X", "Y"])
    for key, wkb_val in data.items():
        for point in wkb.loads(wkb_val, hex=True):
            df = df.append({
                "ID": key, "X": point.x, "Y": point.y
            }, ignore_index=True)
    return df
%timeit fn2(data)
10.3 ms ± 77.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Steele Farnsworth's Solution

def fn3(data):
    return pd.concat(
        (
            (
                pd.concat(
                    (pd.Series({"ID": key, "X": point.x, "Y": point.y}) for
                     point in
                     wkb.loads(wkb_val, hex=True)), axis=1)
            )
            for key, wkb_val in data.items()
        ), axis=1
    ).T
%timeit fn3(data)
3.42 ms ± 132 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Upvotes: 4

Steele Farnsworth
Steele Farnsworth

Reputation: 893

The reason for the slow performance is that each time you do df = df.append(...), you're creating a new DataFrame and copying all the existing rows over.

This solution is a bit lispy-looking, but I believe it will work.

df = pd.concat(
    (
        (
            pd.concat((pd.Series({"ID": key, "X": point.x, "Y": point.y}) for point in wkb.loads(wkb_val, hex=True)), axis=1)
        )
        for key, wkb_val in data.items()
    ), axis=1
).T

The final .T transposes the DataFrame, as this would otherwise create a wide DataFrame with ID, X, and Y as the indices rather than as columns.

Upvotes: 1

Related Questions