Reputation: 341
I have a very large array which has around 10000000 double entries (in the code below this number was set to NX=1000 but actually it will be 10000000 in realistic situations). I want to do some calculations with this array from which I get a new array. Then I do again some calculations with this new array and so on. I am looking for the most efficient way to do these manipulations with respect to RAM (I believe that this is the limiting factor here, since my arras are so large). I know that because of the large arrays I should try to pass the array as much as possible per reference. However I have problems with passing the arrays to other functions. Here is the code:
#include <iostream>
#include <array>
#define NX 1000
////////////////////////
//Function declaration//
////////////////////////
void time_propagation(std::array<double,NX>& X1,std::array<double,NX>& X2, double dt);
std::array<double,NX> F(std::array<double,NX>& X);
///////////////////////
//operator overloading/
///////////////////////
// double* Array
std::array<double,NX> operator*(double d,std::array<double,NX> X){
std::array<double,NX> res={};
for(int i=0;i<NX;i++){
res[i]=X[i]*d;
}
return res;
}
//Array + Array
std::array<double,NX> operator+(std::array<double,NX> X1,std::array<double,NX> X2){
std::array<double,NX> res={};
for(int i=0;i<NX;i++){
res[i]=X1[i]+X2[i];
}
return res;
}
/////////////
//main()/////
/////////////
int main () {
std::array<double,NX> X0={};
std::array<double,NX> X1 = {};
time_propagation(X0,X1,0.1);
//Now I will write X0 to a file. Afterwards X0 is not needed anymore. Only X1. Do I have to manually delete X0?
std::array<double,NX> X2 = {};
time_propagation(X1,X2,0.1);
//Now I will write X1 to a file. Afterwards X1 is not needed anymore. Only X2. Do I have to manually delete X1?
//... I have to do this step very often
return 0;
}
///////////////////////
//Function definitons//
///////////////////////
std::array<double,NX> F(std::array<double,NX>& X){
std::array<double,NX> R={};
double a=X[NX-2];
double b=X[NX-1];
R[NX-1]=-a;
R[NX-1]=3.0;
return R;
}
void time_propagation(std::array<double,NX>& X1,std::array<double,NX>& X2,double dt){
std::array<double,NX> K1=F(X1);
std::array<double,NX> K2=F(X1+dt/2.0*K1);
std::array<double,NX> K3=F(X1+dt/2.0*K2);
std::array<double,NX> K4=F(X1+dt*K3);
X2=X1+1.0/6.0*dt*(K1+2.0*K2+2.0*K3+K4);
}
I know that my error is in the function "time_propagation". In the fifth last line I call the function "F" with the argument "X1+dt/2.0*K1". "X1" was passed by reference and "K1" was defined before. Do I first have to create a copy and the call the function on that copy? Something like that:
void time_propagation(std::array<double,NX>& X1,std::array<double,NX>& X2,double dt){
std::array<double,NX> argument={};
for(int i=0;i<NX;i++){argument[i]=X1[i];}
std::array<double,NX> K1=F(argument);
for(int i=0;i<NX;i++){argument[i]=X1[i]+dt/2.0*K1[i];}
std::array<double,NX> K2=F(argument);
for(int i=0;i<NX;i++){argument[i]=X1[i]+dt/2.0*K2[i];}
std::array<double,NX> K3=F(argument);
for(int i=0;i<NX;i++){argument[i]=X1[i]+dt/2.0*K3[i];}
std::array<double,NX> K4=F(argument);
for(int i=0;i<NX;i++){X2[i]=X1[i]+1.0/6.0*dt*(K1[i]+2.0*K2[i]+2.0*K3[i]+K4[i]); }
}
If I use this new "time_propagation" function then I don't get any errors anymore, but my feeling is that this workaround is very bad and there is a nicer way of doing this? Second and most importantly even with this new version of "time_propagation()", I get a "Segmentation fault (core dumped)" if I increase NX to 10000000. I guess this happens because the code is very badly written? In general my laptop should be able to store 10000000 doubles in the RAM? I have 16 GB of RAM... and 10000000 doubles require only 0.2 GB of RAM!?
Upvotes: 0
Views: 254
Reputation: 6326
According to your comment, you are very close to the answer. One thing you missed is that besides array is stack-based and vector is heap-based there is one more difference between array
and vector
: the vector needs to call its constructor(or resize) to enlarge size. So after switching to vector
, we need a slight modify.
Change the unnecessary copy arguments to reference.
Use a lambda to call swap
or clear
and shrink_to_fit
Bonus: To remove the unnecessary temporary object in operator *
and operator +
, see Expression_templates
A fixed code might like this:
#include <array>
#include <iostream>
#include <vector>
#define NX 1000
////////////////////////
// Function declaration//
////////////////////////
void time_propagation(std::vector<double>& X1, std::vector<double>& X2,
double dt);
std::vector<double> F(const std::vector<double>& X);
///////////////////////
// operator overloading/
///////////////////////
// double* Array
std::vector<double> operator*(double d, const std::vector<double>& X) {
std::vector<double> res(NX);
for (int i = 0; i < NX; i++) {
res[i] = X[i] * d;
}
return res;
}
// Array + Array
std::vector<double> operator+(const std::vector<double>& X1,
const std::vector<double>& X2) {
std::vector<double> res(NX);
for (int i = 0; i < NX; i++) {
res[i] = X1[i] + X2[i];
}
return res;
}
/////////////
// main()/////
/////////////
int main() {
auto release_vec = [](auto& vec) {
vec.clear();
vec.shrink_to_fit();
};
std::vector<double> X0(NX);
std::vector<double> X1(NX);
time_propagation(X0, X1, 0.1);
// Now I will write X0 to a file. Afterwards X0 is not needed anymore. Only
// X1. Do I have to manually delete X0?
release_vec(X0);
std::vector<double> X2(NX);
time_propagation(X1, X2, 0.1);
// Now I will write X1 to a file. Afterwards X1 is not needed anymore. Only
// X2. Do I have to manually delete X1?
//... I have to do this step very often
release_vec(X1);
return 0;
}
///////////////////////
// Function definitons//
///////////////////////
std::vector<double> F(const std::vector<double>& X) {
std::vector<double> R(NX);
double a = X[NX - 2];
double b = X[NX - 1];
R[NX - 1] = -a;
R[NX - 1] = 3.0;
return R;
}
void time_propagation(std::vector<double>& X1, std::vector<double>& X2,
double dt) {
std::vector<double> K1 = F(X1);
std::vector<double> K2 = F(X1 + dt / 2.0 * K1);
std::vector<double> K3 = F(X1 + dt / 2.0 * K2);
std::vector<double> K4 = F(X1 + dt * K3);
X2 = X1 + 1.0 / 6.0 * dt * (K1 + 2.0 * K2 + 2.0 * K3 + K4);
}
Upvotes: 1