Reputation: 5925
I am using R. In a previous post (R: Loop Producing the Following Error: Argument 1 must have names), I learned how to make a function ("create_data") for my code.
Now, I am trying to modify this function.
First, I create some data to be used for this example:
#load library
library(dplyr)
set.seed(123)
# create some data for this example
a1 = rnorm(1000,100,10)
b1 = rnorm(1000,100,5)
c1 = sample.int(1000, 1000, replace = TRUE)
train_data = data.frame(a1,b1,c1)
Here is the modified version of the function:
create_data <- function() {
#generate random numbers
random_1 = runif(1, 80, 120)
random_2 = runif(1, random_1, 120)
random_3 = runif(1, 85, 120)
random_4 = runif(1, random_3, 120)
#bin data according to random criteria
train_data <- train_data %>% mutate(cat = ifelse(a1 <= random_1 & b1 <= random_3, "a", ifelse(a1 <= random_2 & b1 <= random_4, "b", "c")))
train_data$cat = as.factor(train_data$cat)
#new splits
a_table = train_data %>%
select(a1, b1, c1) %>%
filter(cat == "a")
b_table = train_data %>%
select(a1, b1, c1) %>%
filter(cat == "b")
c_table = train_data %>%
select(a1, b1, c1) %>%
filter(cat == "c")
split_1 = runif(1,0, 1)
split_2 = runif(1, 0, 1)
split_3 = runif(1, 0, 1)
#calculate 60th quantile ("quant") for each bin
table_a = data.frame(a_table%>% group_by(cat) %>%
mutate(quant = quantile(c1, prob = split_1)))
table_b = data.frame(b_table%>% group_by(cat) %>%
mutate(quant = quantile(c1, prob = split_2)))
table_c = data.frame(c_table%>% group_by(cat) %>%
mutate(quant = quantile(c1, prob = split_3)))
#create a new variable ("diff") that measures if the quantile is bigger tha the value of "c1"
table_a$diff = ifelse(table_a$quant > table_a$c1,1,0)
table_b$diff = ifelse(table_b$quant > table_b$c1,1,0)
table_c$diff = ifelse(table_c$quant > table_c$c1,1,0)
#group all tables
final_table = rbind(table_a, table_b, table_c)
#create a table: for each bin, calculate the average of "diff"
final_table_2 = data.frame(final_table %>%
group_by(cat) %>%
summarize(
mean = mean(diff)
))
#add "total mean" to this table
final_table_2 = data.frame(final_table_2 %>% add_row(cat = "total", mean = mean(final_table$diff)))
#format this table: add the random criteria to this table for reference
final_table_2$random_1 = random_1
final_table_2$random_2 = random_2
final_table_2$random_3 = random_3
final_table_2$random_4 = random_4
final_table_2$split_1 = split_1
final_table_2$split_2 = split_2
final_table_2$split_3 = split_3
final_table$iteration_number = i
}
The error results when I try to call the function:
Error: Problem with `filter()` input `..1`.
i Input `..1` is `cat == "a"`.
x comparison (1) is possible only for atomic and list types
I have a feeling that maybe the error is occurring over here:
a_table = train_data %>%
select(a1, b1, c1) %>%
filter(cat == "a")
I tried to replace this "select" with a non-dplyr version:
a_table <- train_data[cat == "a", ]
But this also producing an error:
Error in cat == "a" :
comparison (1) is possible only for atomic and list types
Can someone please show me what I am doing wrong?
Thanks
Upvotes: 2
Views: 3927
Reputation: 887711
We could do this in base R
a_table <- subset(train_data, cat == "a", select = c(a1, b1, c1))
Upvotes: 3
Reputation: 389215
You are selecting only 3 columns here which does not include cat
column hence you get the error.
a_table = train_data %>%
select(a1, b1, c1) %>%
filter(cat == "a")
Instead you can first filter
and then select
.
a_table = train_data %>%
filter(cat == "a") %>%
select(a1, b1, c1)
Same should be applied for b_table
and c_table
.
Upvotes: 2