Reputation: 339
I have a really large Excel spreadsheet with many 'checks' on observations (300+ columns). The checks consist of Boolean operators (greater than, equals) and some summation/subtraction:
df <-data.frame(checkID = c(1,2,3,4), checkpart1 = c(50, 70, 111, 320),
checkpart2 = c("+", "==", "*", ">"), checkpart3 = c(18, 17, 6, 3), checkpart4 = c("==", NA, "-", NA), checkpart5 = c(80, NA,76,NA), checkpart6 = c(NA, NA, "==", NA), checkpart7 = c(NA,NA,590, NA))
head(df) ##this is the input
#checkID checkpart1 checkpart2 checkpart3 checkpart4 checkpart5 checkpart6 checkpart7
#1 50 + 18 == 80 <NA> NA
#2 70 == 17 <NA> NA <NA> NA
#3 111 * 6 - 76 == 590
#4 320 > 3 <NA> NA <NA> NA
INSERT CODE THAT MAKES THE EXCEL FUNCTIONS COME TO LIFE HERE.
Mind you that some rows have much longer checks than others, so you can't rely on the column names.
#outcome data frame should look like this, where the checks have been conducted:
View(outputchecks)
#checkID
#1 FALSE
#2 FALSE
#3 TRUE
#4 TRUE
Does anyone know of some tidyr/dplyr/other application in R that can execute these 'static functions' in the dataframe?
Thank you!
Upvotes: 3
Views: 72
Reputation: 21938
You can also use the following solution:
pmap
function to capture each row in our data set as a character string, omitting the first variable (checkID)NA
values within each row1
parse_expr
from rlang
an equivalent to eval
from base R to transform strings into expressioneval_tidy
which is again an equivalent to eval
function from base R to evaluate our expressionUsing rlang
is not necessary here as you can use base R functions quite easily but I meant to show you the alternatives.
library(purrr)
library(rlang)
df %>%
mutate(output = pmap_lgl(select(cur_data(), !checkID), ~ {x <- c(...)[!is.na(c(...))]
parse_expr(paste(x, collapse = " ")) %>%
eval_tidy()}))
checkID checkpart1 checkpart2 checkpart3 checkpart4 checkpart5 checkpart6 checkpart7 output
1 1 50 + 18 == 80 <NA> NA FALSE
2 2 70 == 17 <NA> NA <NA> NA FALSE
3 3 111 * 6 - 76 == 590 TRUE
4 4 320 > 3 <NA> NA <NA> NA TRUE
Upvotes: 4
Reputation: 26238
using pmap
df <-data.frame(checkID = c(1,2,3,4), checkpart1 = c(50, 70, 111, 320),
checkpart2 = c("+", "==", "*", ">"), checkpart3 = c(18, 17, 6, 3), checkpart4 = c("==", NA, "-", NA), checkpart5 = c(80, NA,76,NA), checkpart6 = c(NA, NA, "==", NA), checkpart7 = c(NA,NA,590, NA))
library(tidyverse)
df %>% mutate(exp = pmap_lgl(df[-1], ~ eval(parse(text = paste(na.omit(c(...)), collapse = '')))))
#> checkID checkpart1 checkpart2 checkpart3 checkpart4 checkpart5 checkpart6
#> 1 1 50 + 18 == 80 <NA>
#> 2 2 70 == 17 <NA> NA <NA>
#> 3 3 111 * 6 - 76 ==
#> 4 4 320 > 3 <NA> NA <NA>
#> checkpart7 exp
#> 1 NA FALSE
#> 2 NA FALSE
#> 3 590 TRUE
#> 4 NA TRUE
Created on 2021-07-04 by the reprex package (v2.0.0)
df <-data.frame(checkID = c(1,2,3,4), checkpart1 = c(50, 70, 111, 320),
checkpart2 = c("+", "==", "*", ">"), checkpart3 = c(18, 17, 6, 3), checkpart4 = c("==", NA, "-", NA), checkpart5 = c(80, NA,76,NA), checkpart6 = c(NA, NA, "==", NA), checkpart7 = c(NA,NA,590, NA))
library(tidyverse)
df %>% group_by(checkID) %>%
mutate(across(everything(), ~ifelse(is.na(.), '', as.character(.)))) %>%
rowwise() %>%
mutate(exp = eval(parse(text = paste(c_across(everything()), collapse = ''))))
# A tibble: 4 x 9
# Rowwise: checkID
checkID checkpart1 checkpart2 checkpart3 checkpart4 checkpart5 checkpart6 checkpart7 exp
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <lgl>
1 1 50 + 18 "==" "80" "" "" FALSE
2 2 70 == 17 "" "" "" "" FALSE
3 3 111 * 6 "-" "76" "==" "590" TRUE
4 4 320 > 3 "" "" "" "" TRUE
Or transmute
will result
df %>% group_by(checkID) %>%
mutate(across(everything(), ~ifelse(is.na(.), '', as.character(.)))) %>%
rowwise() %>%
transmute(exp = eval(parse(text = paste(c_across(everything()), collapse = ''))))
# A tibble: 4 x 2
# Rowwise: checkID
checkID exp
<dbl> <lgl>
1 1 FALSE
2 2 FALSE
3 3 TRUE
4 4 TRUE
using summarise
will also drop the groups
df %>% group_by(checkID) %>%
mutate(across(everything(), ~ifelse(is.na(.), '', as.character(.)))) %>%
rowwise() %>%
summarise(exp = eval(parse(text = paste(c_across(everything()), collapse = ''))), .groups = 'drop')
# A tibble: 4 x 2
checkID exp
<dbl> <lgl>
1 1 FALSE
2 2 FALSE
3 3 TRUE
4 4 TRUE
Upvotes: 4
Reputation: 16988
Here is a tidyr
and dplyr
possibility:
library(tidyr)
library(dplyr)
df %>%
tibble() %>%
unite(check, starts_with("checkpart"), sep=" ", na.rm = TRUE) %>%
rowwise() %>%
mutate(check = eval(str2expression(check))) %>%
ungroup()
returns
# A tibble: 4 x 2
checkID check
<dbl> <lgl>
1 1 FALSE
2 2 FALSE
3 3 TRUE
4 4 TRUE
Upvotes: 2
Reputation: 76641
Here is a way with eval/parse
. Start by forming a string with the operations and then evaluate the expression.
txt <- apply(df[-1], 1, function(x) paste(trimws(x[!is.na(x)]), collapse = ""))
sapply(txt, function(x) eval(parse(text = x)))
# 50+18==80 70==17 111*6-76==590 320>3
# FALSE FALSE TRUE TRUE
Upvotes: 4