Reputation: 43
I am using Bert Classifier for my Chatbot project. I perform the necessary tokenizer operations for the incoming text message. Then I insert it into the model and make a prediction. How can I get the accuracy of this estimate?
for text in test_texts:
encoded_dict = tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=max_len,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt',
)
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
print("input_ids ",input_ids)
print("attention_masks ",attention_masks)
batch_size = 32
prediction_data = TensorDataset(input_ids, attention_masks)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)
print("prediction_data ",prediction_data)
print("prediction_sampler ",prediction_sampler)
print("prediction_dataloader ",prediction_dataloader)
model.eval()
predictions, true_labels = [], []
for batch in prediction_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask = batch
print("b input ids",b_input_ids)
with torch.no_grad():
outputs = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask.to(device))
logits = outputs[0]
logits = logits.detach().cpu().numpy()
label_ids = b_input_mask.to('cpu').numpy()
predictions.append(logits)
true_labels.append(label_ids)
print("logits ",logits)
print("label_ids ",label_ids)
print("true_labels ",true_labels)
print('Prediction completed')
prediction_set = []
for i in range(len(true_labels)):
pred_labels_i = np.argmax(predictions[i], axis=1).flatten()
prediction_set.append(pred_labels_i)
prediction= [item for sublist in prediction_set for item in sublist]
print("prediction:", prediction[0])
I am looking for a percentage value. will respond or pass depending on the result of this percentage value.
Upvotes: 1
Views: 1797
Reputation: 7369
Accuracy can be directly computed using some libraries.
For example, you can use sklearn:
from sklearn.metrics import accuracy_score
print("Accuracy:", accuracy_score(true_labels, predictions)) # Value between 0 and 1
print("Accuracy Percentage {} %:".format(100*accuracy_score(true_labels, predictions))) # Value between 0 and 100
``
Upvotes: 1