Reputation: 61
I am trying to submit a job on high compute cluster that needs to run a python code lets say 10000 times. I used gnu parallel but then IT team sent me a mail stating that my job is creating too many ssh login logs in their monitoring system. They asked me to use job arrays instead. My code takes about 12 seconds to run. I believe I need to use #PBS -J statement in my PBS script. Then, I am not sure if it will run in parallel. I need to execute my code lets say on 10 nodes 16 cores each i.e. 160 instances of my code running in parallel. How can I parallelize it i.e. run many instances of my code at a given time utilizing all the resources I have? Below is the initial pbs script with gnu parallel:
#!/bin/bash
#PBS -P My_project
#PBS -N my_job
#PBS -l select=10:ncpus=16:mem=4GB
#PBS -l walltime=01:30:00
module load anaconda
module load parallel
cd $PBS_O_WORKDIR
JOBSPERNODE=16
parallel --joblog jobs.log --wd $PBS_O_WORKDIR -j $JOBSPERNODE --sshloginfile $PBS_NODEFILE --env PATH "python $PBS_O_WORKDIR/xyz.py" :::: inputs.txt
inputs.txt is a fie with integer values 0-9999 in each line which is fed to my python code as an argument. Code is highly independent and output of one instance does not affect another.
Upvotes: 0
Views: 667
Reputation: 1023
a little late but thought I'd answer anyway.
Arrays will run in parallel, but the number of jobs running at once will depend on the availability of nodes and the limit of jobs per user per queue. Essentially, each HPC will be slightly different.
Adding #PBS -J 1-10000
will create an array of 10000 jobs, and assuming the syntax is the same as the HPC I use, something like ID=$(sed -n "${PBS_ARRAY_INDEX}p" /path/to/inputs.txt)
will then be the integers from inputs.txt
whereby PBS array number 123 will return the 123rd line of inputs.txt
.
Alternatively, since you're on an HPC, if the jobs are only taking 12 seconds each, and you have 10000 iterations, then a for
loop will also complete the entire process in 33.33 hours.
Upvotes: 0