Reputation: 31
I am currently trying to fit a set of data using the class Minimize(). I would like to implement this method with the dual_annealing algorithm but unfortunately I cannot This is the code:
def fit_msd2(params, x, data):
A = params['A']
a = params['a']
model = x + A * (np.exp(-a*x)-1)
return model - data
# create a set of Parameters
params = Parameters()
params.add('A', value=527, min=0)
params.add('a', value=0.016, min=0)
from scipy.optimize import dual_annealing
# do fit, here with the default leastsq algorithm
minner = Minimizer(fit_msd2, params, fcn_args=(tL, mean_msd_29))
result = minner.minimize(method = dual_annealing)
# calculate final result
#final = mean_msd_29 + result.residual
# write error report
report_fit(result)
And this is the Attribute error I receive back:
AttributeError Traceback (most recent call last)
<ipython-input-531-a8c40dd82948> in <module>
2 # do fit, here with the default leastsq algorithm
3 minner = Minimizer(fit_msd2, params, fcn_args=(tL, mean_msd_29))
----> 4 result = minner.minimize(method = dual_annealing)
5 # calculate final result
6 final = mean_msd_29 + result.residual
~/opt/anaconda3/lib/python3.8/site-packages/lmfit/minimizer.py in minimize(self, method, params, **kws)
2260 kwargs.update(kws)
2261
-> 2262 user_method = method.lower()
2263 if user_method.startswith('leasts'):
2264 function = self.leastsq
AttributeError: 'function' object has no attribute 'lower'
Please, if you can suggest some edit to the code, I'll strongly appreciate it!
Upvotes: 0
Views: 1574