Reputation: 61459
This tutorial demonstrates how to make a C++/CUDA-based Python extension for PyTorch. But for ... reasons ... my use-case is more complicated than this and doesn't fit neatly within the Python setuptools framework described by the tutorial.
Is there a way to use cmake to compile a Python library that extends PyTorch?
Upvotes: 8
Views: 2936
Reputation: 61459
Yes.
The trick is to use cmake
to combine together all the C++ and CUDA files we'll need and to use PyBind11 to build the interface we want; fortunately, PyBind11 is included with PyTorch.
The code below is collected and kept up-to-date in this Github repo.
Our project consists of several files:
cmake_minimum_required (VERSION 3.9)
project(pytorch_cmake_example LANGUAGES CXX CUDA)
find_package(Python REQUIRED COMPONENTS Development)
find_package(Torch REQUIRED)
# Modify if you need a different default value
if(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
set(CMAKE_CUDA_ARCHITECTURES 61)
endif()
# List all your code files here
add_library(pytorch_cmake_example SHARED
main.cu
)
target_compile_features(pytorch_cmake_example PRIVATE cxx_std_11)
target_link_libraries(pytorch_cmake_example PRIVATE ${TORCH_LIBRARIES} Python::Python)
# Use if the default GCC version gives issues.
# Similar syntax is used if we need better compilation flags.
target_compile_options(pytorch_cmake_example PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-ccbin g++-9>)
# Use a variant of this if you're on an earlier cmake than 3.18
# target_compile_options(pytorch_cmake_example PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-gencode arch=compute_61,code=sm_61>)
#include <c10/cuda/CUDAException.h>
#include <torch/extension.h>
#include <torch/library.h>
using namespace at;
int64_t integer_round(int64_t num, int64_t denom){
return (num + denom - 1) / denom;
}
template<class T>
__global__ void add_one_kernel(const T *const input, T *const output, const int64_t N){
// Grid-strided loop
for(int i=blockDim.x*blockIdx.x+threadIdx.x;i<N;i+=blockDim.x*gridDim.x){
output[i] = input[i] + 1;
}
}
///Adds one to each element of a tensor
Tensor add_one(const Tensor &input){
auto output = torch::zeros_like(input);
// Common values:
// AT_DISPATCH_INDEX_TYPES
// AT_DISPATCH_FLOATING_TYPES
// AT_DISPATCH_INTEGRAL_TYPES
AT_DISPATCH_ALL_TYPES(
input.scalar_type(), "add_one_cuda", [&](){
const auto block_size = 128;
const auto num_blocks = std::min(65535L, integer_round(input.numel(), block_size));
add_one_kernel<<<num_blocks, block_size>>>(
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
input.numel()
);
// Always test your kernel launches
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
);
return output;
}
///Note that we can have multiple implementations spread across multiple files, though there should only be one `def`
TORCH_LIBRARY(pytorch_cmake_example, m) {
m.def("add_one(Tensor input) -> Tensor");
m.impl("add_one", c10::DispatchKey::CUDA, TORCH_FN(add_one));
//c10::DispatchKey::CPU is also an option
}
Compile it all using this command:
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_PREFIX_PATH=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'` -GNinja ..
You can then run the following test script.
import torch
torch.ops.load_library("build/libpytorch_cmake_example.so")
shape = (3,3,3)
a = torch.randint(0, 10, shape, dtype=torch.float).cuda()
a_plus_one = torch.ops.pytorch_cmake_example.add_one(a)
Upvotes: 9