Reputation: 51
I'm having troubles for some days trying to resolve this.
I have a nested json file with a complex schema (array inside structure, structure inside array) and I need to put data in dataframe.
What I have in input is this (as an example):
+-----+----------------+-----------------------------------+---------+
| id | name | detail | item |
+-----+----------------+-----------------------------------+---------+
| 100 | Peter Castle | [[D100A, Credit],[D100B, Debit]] | [10,31] |
| 101 | Quino Yukimori | [[D101A, Credit],[D101B, Credit]] | [55,49] |
+-----+----------------+-----------------------------------+---------+
I should read like this
+-----+----------------+-----------+--------+-----------+
| id | name | detail_id | type | item_qty |
+-----+----------------+-----------+--------+-----------+
| 100 | Peter Castle | D100A | Credit | 10 |
| 100 | Peter Castle | D100B | Debit | 31 |
| 101 | Quino Yukimori | D101A | Credit | 55 |
| 101 | Quino Yukimori | D101B | Credit | 49 |
+-----+----------------+-----------+--------+-----------+
But what I get is this:
df.withColumn('detail', explode('detail')).withColumn('item', explode('item'))
+-----+----------------+-----------+--------+-----------+
| id | name | detail_id | type | item_qty |
+-----+----------------+-----------+--------+-----------+
| 100 | Peter Castle | D100A | Credit | 10 |
| 100 | Peter Castle | D100A | Debit | 10 |
| 100 | Peter Castle | D100B | Credit | 31 |
| 100 | Peter Castle | D100B | Debit | 31 |
| 101 | Quino Yukimori | D101A | Credit | 55 |
| 101 | Quino Yukimori | D101A | Credit | 55 |
| 101 | Quino Yukimori | D101B | Credit | 49 |
| 101 | Quino Yukimori | D101B | Credit | 49 |
+-----+----------------+-----------+--------+-----------+
I have tried combining columns with arrays_zip and then explode, but the problem is there is array inside array, and if I explode detail array columns, the explode of item array columns multiply data.
Any idea how can I implement that?
Sorry about my english, is not my birth language.
Here is my schema, which complicates me reading it for the multiple nested arrays:
|-- id: string(nullable = true)
|-- name: string(nullable = true)
|-- detail: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- detail_id: string(nullable = true)
| | |-- type: string(nullable = true)
|-- item: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- item_qty : long(nullable = true)
|-- deliveryTrack: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- date: string(nullable = true)
| | |-- track: array (nullable = true)
| | | |-- element: struct (containsNull = true)
| | | | |-- time: string (nullable = true)
| | | | |-- driver: string (nullable = true)
Upvotes: 1
Views: 4308
Reputation: 2939
Use explode
only once after you zip both arrays with arrays_zip
. After that, use the expr
function to get the data.
from pyspark.sql.functions import explode, arrays_zip, col, expr
df1 = (df
.withColumn('buffer', explode(arrays_zip(col('detail'), col('item'))))
.withColumn('detail_id', expr("buffer.detail.detail_id"))
.withColumn('type', expr("buffer.detail.type"))
.withColumn('item_qty', expr("buffer.item.item_qty"))
.drop(*['detail', 'item', 'buffer'])
)
df1.show()
+---+--------------+---------+------+--------+
|id |name |detail_id|type |item_qty|
+---+--------------+---------+------+--------+
|100|Peter Castle |D100A |Credit|10 |
|100|Peter Castle |D100B |Debit |31 |
|101|Quino Yukimori|D101A |Credit|55 |
|101|Quino Yukimori|D101B |Credit|49 |
+---+--------------+---------+------+--------+
Upvotes: 2