Reputation: 167
I'd like to merge two tables while replacing the null value in one column from one table with the non-null values from the same labelled column from another table.
The code below is an example of the tables to be merged:
# Table 1 (has rows with missing values)
a=['x','x','x','y','y','y']
b=['z', 'z', 'z' ,'w', 'w' ,'w' ]
c=[1 for x in a]
d=[2 for x in a]
e=[3 for x in a]
f=[4 for x in a]
g=[1,1,1,np.nan, np.nan, np.nan]
table_1=pd.DataFrame({'a':a, 'b':b, 'c':c, 'd':d, 'e':e, 'f':f, 'g':g})
table_1
a b c d e f g
0 x z 1 2 3 4 1.0
1 x z 1 2 3 4 1.0
2 x z 1 2 3 4 1.0
3 y w 1 2 3 4 NaN
4 y w 1 2 3 4 NaN
5 y w 1 2 3 4 NaN
# Table 2 (new table to be merged to table_1, and would need to use values in column 'c' to replace values in the same column in table_1, while keeping the values in the other non-null rows)
a=['y', 'y', 'y']
b=['w', 'w', 'w']
g=[2,2,2]
table_2=pd.DataFrame({'a':a, 'b':b, 'g':g})
table_2
a b g
0 y w 2
1 y w 2
2 y w 2
This is the code I use for merging the 2 tables, and the ouput I get
merged_table=pd.merge(table_1, table_2, on=['a', 'b'], how='left')
merged_table
Current output:
a b c d e f g_x g_y
0 x z 1 2 3 4 1.0 NaN
1 x z 1 2 3 4 1.0 NaN
2 x z 1 2 3 4 1.0 NaN
3 y w 1 2 3 4 NaN 2.0
4 y w 1 2 3 4 NaN 2.0
5 y w 1 2 3 4 NaN 2.0
6 y w 1 2 3 4 NaN 2.0
7 y w 1 2 3 4 NaN 2.0
8 y w 1 2 3 4 NaN 2.0
9 y w 1 2 3 4 NaN 2.0
10 y w 1 2 3 4 NaN 2.0
11 y w 1 2 3 4 NaN 2.0
Desired output:
a b c d e f g
0 x z 1 2 3 4 1.0
1 x z 1 2 3 4 1.0
2 x z 1 2 3 4 1.0
3 y w 1 2 3 4 2.0
4 y w 1 2 3 4 2.0
5 y w 1 2 3 4 2.0
Upvotes: 0
Views: 97
Reputation: 416
There are some problems you have to solve:
Tables 1,2 'g' column type: it should be float. So we use DataFrame.astype({'column_name':'type'})
for both tables 1,2;
Indexes. You are allowed to insert data by index, because other columns of table_1 contain the same data : 'y w 1 2 3 4'. Therefore we should filter NaN values from 'g' column of the table 1: ind=table_1[*pd.isnull*(table_1['g'])]
and create a new Series with new indexes from table 1 that cover NaN values from 'g': pd.Series(table_2['g'].to_list(),index=ind.index)
try this solution:
table_1=table_1.astype({'a':'str','b':'str','g':'float'})
table_2=table_2.astype({'a':'str','b':'str','g':'float'})
ind=table_1[pd.isnull(table_1['g'])]
table_1.loc[ind.index,'g']=pd.Series(table_2['g'].to_list(),index=ind.index)
Here is the output.
Upvotes: 1