Reputation: 506
I just downloaded this CSV from kaggle
https://www.kaggle.com/psvishnu/bank-direct-marketing?select=bank-full.csv
However, when it downloads, all the 17 or so columns are in 1, so when I use
df = pd.read_csv('bank-full.csv)
it too has all values in one column.
Any thoughts would be great, I haven't come across this issue before, thanks!
df sample
58;"management";"married";"tertiary";"no";2143;"yes";"no";"unknown";5;"may";261;1;-1;0;"unknown";"no"
0 44;"technician";"single";"secondary";"no";29;"yes";"no";"unknown";5;"may";151;1;-1;0;"unknown";"no"
1 33;"entrepreneur";"married";"secondary";"no";2;"yes";"yes";"unknown";5;"may";76;1;-1;0;"unknown";"no"
2 47;"blue-collar";"married";"unknown";"no";1506;"yes";"no";"unknown";5;"may";92;1;-1;0;"unknown";"no"
3 33;"unknown";"single";"unknown";"no";1;"no";"no";"unknown";5;"may";198;1;-1;0;"unknown";"no"
4 35;"management";"married";"tertiary";"no";231;"yes";"no";"unknown";5;"may";139;1;-1;0;"unknown";"no"
5 28;"management";"single";"tertiary";"no";447;"yes";"yes";"unknown";5;"may";217;1;-1;0;"unknown";"no"
6 42;"entrepreneur";"divorced";"tertiary";"yes";2;"yes";"no";"unknown";5;"may";380;1;-1;0;"unknown";"no"
7 58;"retired";"married";"primary";"no";121;"yes";"no";"unknown";5;"may";50;1;-1;0;"unknown";"no"
8 43;"technician";"single";"secondary";"no";593;"yes";"no";"unknown";5;"may";55;1;-1;0;"unknown";"no"
9 41;"admin.";"divorced";"secondary";"no";270;"yes";"no";"unknown";5;"may";222;1;-1;0;"unknown";"no"
Upvotes: 0
Views: 207
Reputation: 3987
You can do this:
import pandas as pd
df=pd.read_csv("<filename.csv>",sep=";") #Or you may use delimiter=";"
print(df)
Your file's columns are separated by ;
so we assigned separator as ;
.
You can get further more information about read_csv
from documentation.
Upvotes: 1
Reputation: 21
you can use delimiter
argument for read_csv
function to set the character for separation as
df = pd.read_csv('bank-full.csv', delimiter=';')
Upvotes: 0