Reputation: 2843
I’m attempting to add a circle using geom_polygon()
to add a reference line to radial bar chart. (I know this is not the ideal way to present this data, but it’s not entirely up to me).
Following this issue, I can create a nice circle:
library(tidyverse)
lines <- tibble(
rating = rep(1:7, times = 3),
average = rep(1:3, each = 7)
)
ggplot(lines, aes(x = rating, y = average)) +
geom_polygon(aes(group = average), fill = NA, color = "black") +
scale_x_continuous(breaks = 1:7) +
scale_y_continuous(limits = c(0, 3), breaks = 0:3) +
coord_polar()
This is great. The problem is that 1
and 7
share the top spot. So when I add data for the bars, the circle flattens out.
set.seed(123)
bars <- tibble(rating = 1:7,
average = runif(7, min = 0, max = 3))
ggplot(lines, aes(x = rating, y = average)) +
geom_col(data = bars, aes(fill = factor(rating)), show.legend = FALSE) +
geom_polygon(aes(group = average), fill = NA, color = "black") +
scale_x_continuous(breaks = 1:7) +
scale_y_continuous(limits = c(0, 3), breaks = 0:3) +
coord_polar()
Is there any way keep the polygon a circle in this situation? Or to interpolate between the 7 and 1 to keep the original curve?
Created on 2021-07-26 by the reprex package (v2.0.0)
Session infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.1.0 (2021-05-18)
#> os macOS Big Sur 10.16
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Chicago
#> date 2021-07-26
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] standard (@0.2.1)
#> backports 1.2.1 2020-12-09 [1] standard (@1.2.1)
#> broom 0.7.8 2021-06-24 [1] CRAN (R 4.1.0)
#> cellranger 1.1.0 2016-07-27 [1] standard (@1.1.0)
#> cli 3.0.1 2021-07-17 [1] CRAN (R 4.1.0)
#> colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.0)
#> crayon 1.4.1 2021-02-08 [1] standard (@1.4.1)
#> curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.0)
#> DBI 1.1.1 2021-01-15 [1] standard (@1.1.1)
#> dbplyr 2.1.1 2021-04-06 [1] standard (@2.1.1)
#> digest 0.6.27 2020-10-24 [1] standard (@0.6.27)
#> dplyr * 1.0.7 2021-06-18 [1] CRAN (R 4.1.0)
#> ellipsis 0.3.2 2021-04-29 [1] standard (@0.3.2)
#> evaluate 0.14 2019-05-28 [1] standard (@0.14)
#> fansi 0.5.0 2021-05-25 [1] standard (@0.5.0)
#> farver 2.1.0 2021-02-28 [1] standard (@2.1.0)
#> forcats * 0.5.1 2021-01-27 [1] standard (@0.5.1)
#> fs 1.5.0 2020-07-31 [1] standard (@1.5.0)
#> generics 0.1.0 2020-10-31 [1] standard (@0.1.0)
#> ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.0)
#> glue 1.4.2 2020-08-27 [1] standard (@1.4.2)
#> gtable 0.3.0 2019-03-25 [1] standard (@0.3.0)
#> haven 2.4.1 2021-04-23 [1] standard (@2.4.1)
#> highr 0.9 2021-04-16 [1] standard (@0.9)
#> hms 1.1.0 2021-05-17 [1] standard (@1.1.0)
#> htmltools 0.5.1.1 2021-01-22 [1] standard (@0.5.1.1)
#> httr 1.4.2 2020-07-20 [1] standard (@1.4.2)
#> jsonlite 1.7.2 2020-12-09 [1] standard (@1.7.2)
#> knitr 1.33 2021-04-24 [1] standard (@1.33)
#> lifecycle 1.0.0 2021-02-15 [1] standard (@1.0.0)
#> lubridate 1.7.10 2021-02-26 [1] standard (@1.7.10)
#> magrittr 2.0.1 2020-11-17 [1] standard (@2.0.1)
#> mime 0.11 2021-06-23 [1] CRAN (R 4.1.0)
#> modelr 0.1.8 2020-05-19 [1] standard (@0.1.8)
#> munsell 0.5.0 2018-06-12 [1] standard (@0.5.0)
#> pillar 1.6.1 2021-05-16 [1] standard (@1.6.1)
#> pkgconfig 2.0.3 2019-09-22 [1] standard (@2.0.3)
#> purrr * 0.3.4 2020-04-17 [1] standard (@0.3.4)
#> R6 2.5.0 2020-10-28 [1] standard (@2.5.0)
#> Rcpp 1.0.7 2021-07-07 [1] CRAN (R 4.1.0)
#> readr * 2.0.0 2021-07-20 [1] CRAN (R 4.1.0)
#> readxl 1.3.1 2019-03-13 [1] standard (@1.3.1)
#> reprex 2.0.0 2021-04-02 [1] standard (@2.0.0)
#> rlang 0.4.11 2021-04-30 [1] standard (@0.4.11)
#> rmarkdown 2.9 2021-06-15 [1] CRAN (R 4.1.0)
#> rstudioapi 0.13 2020-11-12 [1] standard (@0.13)
#> rvest 1.0.1 2021-07-26 [1] CRAN (R 4.1.0)
#> scales 1.1.1 2020-05-11 [1] standard (@1.1.1)
#> sessioninfo 1.1.1 2018-11-05 [1] standard (@1.1.1)
#> stringi 1.7.3 2021-07-16 [1] CRAN (R 4.1.0)
#> stringr * 1.4.0 2019-02-10 [1] standard (@1.4.0)
#> styler 1.5.1 2021-07-13 [1] CRAN (R 4.1.0)
#> tibble * 3.1.3 2021-07-23 [1] CRAN (R 4.1.0)
#> tidyr * 1.1.3 2021-03-03 [1] standard (@1.1.3)
#> tidyselect 1.1.1 2021-04-30 [1] standard (@1.1.1)
#> tidyverse * 1.3.1 2021-04-15 [1] standard (@1.3.1)
#> tzdb 0.1.2 2021-07-20 [1] CRAN (R 4.1.0)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.0)
#> vctrs 0.3.8 2021-04-29 [1] standard (@0.3.8)
#> withr 2.4.2 2021-04-18 [1] standard (@2.4.2)
#> xfun 0.24 2021-06-15 [1] CRAN (R 4.1.0)
#> xml2 1.3.2 2020-04-23 [1] standard (@1.3.2)
#> yaml 2.2.1 2020-02-01 [1] standard (@2.2.1)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.1/Resources/library
Upvotes: 1
Views: 463
Reputation: 124213
One option would be to make use of geom_hline
instead of geom_polygon
:
library(tidyverse)
set.seed(123)
lines <- tibble(
rating = rep(1:7, times = 3),
average = rep(1:3, each = 7)
)
bars <- tibble(rating = 1:7,
average = runif(7, min = 0, max = 3))
ggplot(lines, aes(x = rating, y = average)) +
geom_col(data = bars, aes(fill = factor(rating)), show.legend = FALSE) +
geom_hline(aes(yintercept = average)) +
scale_x_continuous(breaks = 1:7) +
scale_y_continuous(limits = c(0, 3), breaks = 0:3) +
coord_polar()
Upvotes: 2