Reputation: 53
I want to filter my time series based on a variable time interval. More specifically, consider the time t_i from a timestamp t. I want to filter my time series such that what remains is a time series containing only timestamps from t_i - 15 min up to and including t_i + 15 min.
Here's what I tried:
library(lubridate)
library(dplyr)
mv <- 2 # moving window
t <- as.POSIXct("2020-06-20 12:00", tz="UTC") # time stamp
time <- seq(ymd_hm('2020-01-01 00:00'),ymd_hm('2020-12-31 23:45'), by = '15 mins')
ts <- tibble(time=time, data=sin(seq(1,length(time),1)))
# What I did:
ts %>%
filter(time >= t - mv*24*60*60) %>%
filter(time <= t) %>%
filter(strftime(time, format = "%H:%M", tz = "UTC") >= strftime(t-15*60, format = "%H:%M", tz = "UTC")) %>%
filter(strftime(time, format = "%H:%M", tz = "UTC") <= strftime(t+15*60, format = "%H:%M", tz = "UTC"))
Output:
# A tibble: 7 x 2
time data
<dttm> <dbl>
1 2020-06-18 12:00:00 -0.435
2 2020-06-18 12:15:00 0.523
3 2020-06-19 11:45:00 0.298
4 2020-06-19 12:00:00 0.964
5 2020-06-19 12:15:00 0.744
6 2020-06-20 11:45:00 0.885
7 2020-06-20 12:00:00 0.0870
This is exactly what I want but it breaks down when t <- as.POSIXct("2020-06-20 23:45", tz="UTC")
(also with 00:00
):
# A tibble: 0 x 2
# … with 2 variables: time <dttm>, data <dbl>
I included an if-else statement to circumvent this but it is far from elegant and doesn't give me exactly what I want:
t <- as.POSIXct("2020-06-20 23:45", tz="UTC") # time stamp
if(strftime(t, format = "%H:%M", tz = "UTC") %in% c("23:45","00:00")){
ts %>%
filter(time >= t - mv*24*60*60) %>%
filter(time <= t) %>%
filter(strftime(time, format = "%H:%M", tz = "UTC") >= strftime(t-15*60, format = "%H:%M", tz = "UTC"))
} else {
ts %>%
filter(time >= t - mv*24*60*60) %>%
filter(time <= t) %>%
filter(strftime(time, format = "%H:%M", tz = "UTC") >= strftime(t-15*60, format = "%H:%M", tz = "UTC")) %>%
filter(strftime(time, format = "%H:%M", tz = "UTC") <= strftime(t+15*60, format = "%H:%M", tz = "UTC"))
}
Output:
# A tibble: 5 x 2
time data
<dttm> <dbl>
1 2020-06-18 23:45:00 0.543
2 2020-06-19 23:30:00 -0.177
3 2020-06-19 23:45:00 -0.924
4 2020-06-20 23:30:00 -0.936
5 2020-06-20 23:45:00 -0.209
Desired output:
# A tibble: 7 x 2
time data
<dttm> <dbl>
1 2020-06-18 23:45:00 0.543
2 2020-06-19 00:00:00 -0.413
3 2020-06-19 23:30:00 -0.177
4 2020-06-19 23:45:00 -0.924
5 2020-06-20 00:00:00 -0.821
6 2020-06-20 23:30:00 -0.936
7 2020-06-20 23:45:00 -0.209
There seems to be an issue with the shift between days but I'm not sure how to solve it and I haven't been able to find similar questions. Is there a way to achieve this (elegantly)?
Upvotes: 5
Views: 886
Reputation: 1100
ts %>%
filter(between(time, t - days(mv), t)) %>%
mutate(aux = as.numeric(time) %% (60 * 60 * 24)) %>%
filter(between(aux,
(as.numeric(t) %% (60 * 60 * 24) - 900),
(as.numeric(t) %% (60 * 60 * 24) + 900)) |
aux == 0) %>%
select(-aux)
gives
# # A tibble: 7 x 2
# time data
# <dttm> <dbl>
# 1 2020-06-18 23:45:00 0.543
# 2 2020-06-19 00:00:00 -0.413
# 3 2020-06-19 23:30:00 -0.177
# 4 2020-06-19 23:45:00 -0.924
# 5 2020-06-20 00:00:00 -0.821
# 6 2020-06-20 23:30:00 -0.936
# 7 2020-06-20 23:45:00 -0.209
It's probably very particular for this specific task and a bit hard to read. The interval reflects a duration (fixed amount of seconds).
For similar cases, where the date increases, you need to change the offsets and adjust the values by 86400. This version doesn't work if t
is as midnight nor if the offset is not equal to 15'.
If you have just 2 days, this would also be an approach (using periods instead of durations):
ts %>%
filter(between(time, t - days(mv), t)) %>%
filter(between(time, t - minutes(15), t + minutes(15)) |
between(time, t - days(1) - minutes(15), t - days(1) + minutes(15)) |
between(time, t - days(2) - minutes(15), t - days(2) + minutes(15)))
which gives the same result in this case. If you want to adjust the margins, you need to change the values.
By the way: you should NOT use t
as name for an object in R, because it's already the name of a function.
HTH
Upvotes: 1
Reputation: 1945
It apperars that strftime(ts$time[1], format = "%H:%M", tz = "UTC") > strftime(t, format = "%H:%M", tz = "UTC")
is evaluated to FALSE
which makes sense depending on how you look at it.
To mitigate this you'll need full YYYY-MM-DD HH:MM
such that it is evaluated 'correctly'. Which will be the case if you evaluate the the full string, instead of only the hours
.
We can get the intervals
by adding a dummy
-variable we call time_
that includes all the HH:MM
, and then treat them as strings
,
# Troublesome Vector;
t <- ymd_hm("2020-06-20 23:45", tz="UTC")
ts %>% filter(
between(
time,
left = t - mv*24*60*60 -15*60,
right = t
)
) %>% mutate(
time_ = strftime(time, format = "%H:%M", tz = "UTC") %>% as.character()
) %>% filter(
str_detect(
time_,
pattern = seq(
t-15*60,
t+15*60,
by = "15 mins"
) %>% strftime(format = "%H:%M", tz = "UTC") %>% paste(
collapse = "|"
)
)
)
Which gives the output
,
# A tibble: 8 x 3
time data time_
<dttm> <dbl> <chr>
1 2020-06-18 23:30:00 1.00 23:30
2 2020-06-18 23:45:00 0.543 23:45
3 2020-06-19 00:00:00 -0.413 00:00
4 2020-06-19 23:30:00 -0.177 23:30
5 2020-06-19 23:45:00 -0.924 23:45
6 2020-06-20 00:00:00 -0.821 00:00
7 2020-06-20 23:30:00 -0.936 23:30
8 2020-06-20 23:45:00 -0.209 23:45
Upvotes: 1