Reputation: 420
mu
can not be defined.
Definiton mu (A : Type) (f : A -> A) : A := f (mu A f).
However, the Axiom command can be used to pseudo-define mu
.
Axiom mu : forall A : Type, (A -> A) -> A.
Axiom mu_beta : forall (A : Type) (f : A -> A), mu A f = f (mu A f).
Can I do the same for higher_path
and higher_path_argument
? Even after using several techniques, it still seems to be impossible.
Definition higher_path
: forall n : nat, higher_path_argument n -> Type
:= fun n : nat =>
match n with
| O => fun x : higher_path_argument 0 => x
| S n_p =>
fun x : higher_path_argument (S n_p) =>
match x with
| existT _ x_a x_b =>
match x_b with
| pair x_b_a x_b_b => x_b_a = x_b_b :> higher_path n_p x_a
end
end
end.
Definition higher_path_argument
: nat -> Type
:= fun n : nat =>
match n with
| O => Type
| S n_p =>
sigT
(A := higher_path_argument n_p)
(fun x_p => prod (higher_path n_p x_p) (higher_path n_p x_p))
end.
Upvotes: 0
Views: 61
Reputation: 5108
You will have to start with
Axiom higher_path_argument : nat -> Type.
Axiom higher_path : forall n : nat, higher_path_argument n -> Type.
then higher_path_argument_beta
which you will have to use in the higher_path_beta
to compute the type. You will however end up with something really verbose however.
Upvotes: 1