Reputation: 618
I have the following data:
print(tables['T10101'].keys())
dict_keys(['Y033RL', 'A007RL', 'A253RL', 'A646RL', 'A829RL', 'A008RL', 'A191RP', 'DGDSRL', 'A822RL', 'A824RL', 'A006RL', 'A825RL', 'A656RL', 'A823RL', 'Y001RL', 'DNDGRL', 'DDURRL', 'A021RL', 'A009RL', 'A020RL', 'DSERRL', 'A011RL', 'DPCERL', 'A255RL', 'A191RL'])
Each key has the following value, a list of tuples: The dates are the same but the values change.
[('-20.7', '1930'), ('-33.3', '1931'), ('-41.4', '1932'), ('2.5', '1933'), ('38.3', '1934'), ('36.3', '1935'), ('37.2', '1936'), ('16.2', '1937'), ('-30.4', '1938'), ('15.4', '1939'), ('29.6', '1940'), ('17.2', '1941'), ('-42.6', '1942'), ('-10.2', '1943'), ('33.7', '1944'), ('43.2', '1945'), ('24.7', '1946'), ('36.0', '1947'), ('-8.3', '1947Q2'),
I would like to create the following dataframe:
1930 | 1931 | 1932 | 1933 | 1934 |
Y033RL|-20.7| -33.3| -41.4| 2.5 | 38.3 |
A007RL| data| data | data | data | data |
What's the best way to do this? I came up with this roundabout way of joining created dataframes but it is very inefficient as I have lots of data. I would like to have everything in a dictionary first and then convert it to one dataframe.
def dframeCreator(dataname):
dframeList = list(tables[dataname].keys())
df = tables[dataname][dframeList[0]]
for x in range(len(dframeList[1:])):
df = df.join(tables[dataname][dframeList[x+1]])
return df
Upvotes: 1
Views: 1052
Reputation: 71689
We can use dict
comprehension to normalize the given dictionary in a standard format which is suitable for creating a dataframe
d = tables['T10101']
df = pd.DataFrame({k: dict(map(reversed, v)) for k, v in d.items()}).T
print(df)
1930 1931 1932 1933 ... 1945 1946 1947 1947Q2
Y033RL -20.7 -33.3 -41.4 2.5 ... 43.2 24.7 36.0 -8.3
Upvotes: 4
Reputation: 195418
If tables
is your dictionary, you can do:
df = pd.DataFrame(
[{"idx": k, **dict([(b, a) for a, b in v])} for k, v in tables.items()],
).set_index("idx")
df.index.name = None
print(df)
Prints:
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1947Q2
T10101 -20.7 -33.3 -41.4 2.5 38.3 36.3 37.2 16.2 -30.4 15.4 29.6 17.2 -42.6 -10.2 33.7 43.2 24.7 36.0 -8.3
A007RL xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
Upvotes: 0