Reputation: 7
I'm trying to run an automatic t-test for all the variables along for each group.
However, using for-loop on large data seem to burden my computer, and simply stops working.
Would there be a way to remove the for-loop and make the code run faster?
the sample code calculates every possible combination of t-test for the given data using "for-loop" and "combn"
( i.e. Sepal.Width, Sepal.Length, Petal.Length, Petal.Width for (setosa_vs_versicolor, setosa_vs_virginica, versicolor_vs_virginica"))
then saves every t-test result into a blank matrix ( 4 rows for each variable and 3 column for each comparison
The data set I'm trying to use this code on has 36 groups along with 103 variables
Aiming for a complete overhaul on the following code, which is a complete mess with multiple for-loops and seems to take forever for such data https://github.com/CHKim5/LMSstat/blob/master/R/Allstats.R
system.time(
{data(iris)
Test<-as.data.frame(matrix(data = NA,nrow = 4, ncol = 3))
for (t in 1:(ncol(iris)-1)){
Test[t,]<-combn(as.character(unique(iris$Species)),2,
function(x) t.test(
x =iris[iris$Species == x[1],][,t],
y =iris[iris$Species == x[2],][,t])[["p.value"]])
}
}
)
Upvotes: 0
Views: 170
Reputation: 10162
If you want the fastest time possible, use a benchmark (below I use bench::mark()
).
There are many improvements that can be done.
When the goal is speed, the data.table
package is usually a good start.
Additionally, you want to make sure that all computation that are redundant are taken out of the hot-code (the code within your loop).
The fastest code I was able to come up with is this:
library(data.table)
iris <- as.data.table(iris)
# split the dataset by your target group
species_split <- split(iris, iris$Species)
# create a wrapper for the t-test
split_t_test <- function(x, i) t.test(species_split[[x[1]]][[i]],
species_split[[x[2]]][[i]])[["p.value"]]
# iterate over the columns and compute the t-tests
res <- lapply(seq_len(ncol(iris) - 1),
function(i) as.list(combn(names(species_split), 2, split_t_test, i = i)))
# combine the results
df <- rbindlist(res)
Which is around 10 times faster than your original code.
original_function <- function(data) {
Test <- as.data.frame(matrix(data = NA, nrow = 4, ncol = 3))
for (t in 1:(ncol(data) - 1)) {
Test[t, ] <- combn(
as.character(unique(data$Species)),
2,
function(x) {
t.test(
x = data[data$Species == x[1], ][, t],
y = data[data$Species == x[2], ][, t]
)[["p.value"]]
}
)
}
return(Test)
}
# take out as much as possible from the loop
base_function <- function(data) {
unique_species <- as.character(unique(data$Species))
t_test_function <- function(x, i)
t.test(data[data$Species == x[1], ][, i],
data[data$Species == x[2], ][, i])[["p.value"]]
res <- lapply(seq_len(ncol(data) - 1),
function(i) {
combn(unique_species, 2, t_test_function, i = i)
})
return(do.call(rbind, res))
}
# split the dataset first to avoid the lookup for the Species in the loop
split_function <- function(data) {
species_split <- base::split(data, data$Species)
split_t_test <- function(x, i)
t.test(species_split[[x[1]]][, i],
species_split[[x[2]]][, i])[["p.value"]]
res <- lapply(seq_len(ncol(data) - 1),
function(i) combn(names(species_split), 2, split_t_test, i = i))
return(do.call(rbind, res))
}
# use data.table
datatable_version <- function(data) {
unique_species <- as.character(data[, unique(Species)])
dt_t_test <- function(x, i)
t.test(data[Species == x[1]][[i]], data[Species == x[2]][[i]])[["p.value"]]
rbindlist(lapply(seq_len(ncol(data) - 1),
function(i) as.list(combn(unique_species, 2, dt_t_test, i = i))))
}
# combine the split and data.table
dt_split <- function(data) {
species_split <- split(data, data$Species)
split_t_test <- function(x, i)
t.test(species_split[[x[1]]][[i]],
species_split[[x[2]]][[i]])[["p.value"]]
res <- lapply(seq_len(ncol(data) - 1),
function(i) as.list(combn(names(species_split), 2, split_t_test, i = i)))
return(rbindlist(res))
}
library(data.table)
iris_dt <- as.data.table(iris)
bench::mark(
original = original_function(iris),
base = base_function(iris),
split = split_function(iris),
datatable = datatable_version(iris_dt),
dt_split = dt_split(iris_dt),
check = FALSE # datatable returns a data.table not a data.frame
)
#> # A tibble: 5 x 13
#> expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time result memory time gc
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm> <list> <list> <list> <list>
#> 1 original 7.52ms 11.1ms 51.4 245.5KB 0 26 0 505ms <NULL> <Rprofmem [605~ <bench_tm [~ <tibble [26 ~
#> 2 base 6.75ms 9.38ms 102. 243.6KB 0 51 0 500ms <NULL> <Rprofmem [603~ <bench_tm [~ <tibble [51 ~
#> 3 split 2.56ms 3.48ms 216. 44.3KB 2.57 84 1 389ms <NULL> <Rprofmem [167~ <bench_tm [~ <tibble [85 ~
#> 4 datatable 7.9ms 9.99ms 83.7 562.2KB 2.15 39 1 466ms <NULL> <Rprofmem [439~ <bench_tm [~ <tibble [40 ~
#> 5 dt_split 2.74ms 3.32ms 277. 161.6KB 0 139 0 502ms <NULL> <Rprofmem [660~ <bench_tm [~ <tibble [139~
Compute the benchmarks on a larger file with 100,000 observations.
set.seed(15212)
idx <- sample.int(nrow(iris), 1e5, replace = TRUE)
large_iris <- iris[idx, ]
large_iris_dt <- iris_dt[idx, ]
bench::mark(
original = original_function(large_iris),
base = base_function(large_iris),
split = split_function(large_iris),
datatable = datatable_version(large_iris_dt),
dt_split = dt_split(large_iris_dt),
check = FALSE, # datatable returns a data.table not a data.frame
min_time = 2
)
#> # A tibble: 5 x 13
#> expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time result memory time gc
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm> <list> <list> <list> <list>
#> 1 original 158.4ms 179.2ms 5.49 147.8MB 9.99 11 20 2s <NULL> <Rprofmem [617 ~ <bench_tm ~ <tibble [11 ~
#> 2 base 145.3ms 167.9ms 5.84 146.8MB 10.2 12 21 2.05s <NULL> <Rprofmem [793 ~ <bench_tm ~ <tibble [12 ~
#> 3 split 19.8ms 23.7ms 31.9 25.2MB 11.0 64 22 2.01s <NULL> <Rprofmem [146 ~ <bench_tm ~ <tibble [64 ~
#> 4 datatable 49.9ms 72.4ms 12.7 68MB 10.3 26 21 2.04s <NULL> <Rprofmem [392 ~ <bench_tm ~ <tibble [26 ~
#> 5 dt_split 17.4ms 18.7ms 38.8 23MB 10.9 78 22 2.01s <NULL> <Rprofmem [174 ~ <bench_tm ~ <tibble [78 ~
Upvotes: 1
Reputation: 3256
An option would be the next:
library(tidyverse)
# Either the next 3:
# library(purrr)
# library(dplyr)
# library(tidyr)
combn(unique(iris$Species), 2, simplify = FALSE) %>%
structure(names = sapply(., function(.x) paste0(.x, collapse = "-"))) %>%
map_dfr(~iris %>%
pivot_longer(cols = -Species) %>%
pivot_wider(id_cols = name, names_from = Species, values_from = value) %>%
unnest(cols = c(-name)) %>%
nest_by(name) %>%
mutate(tt = list(t.test(data[[.x[[1]]]], data[[.x[[2]]]]))) %>%
summarise(across(-data, broom::tidy), .groups = "drop") %>%
mutate(across(c(-name), ~.$p.value)),
.id = "comb") %>%
pivot_wider(names_from = comb, values_from = tt)
# A tibble: 4 × 4
name `setosa-versicolor` `setosa-virginica` `versicolor-virginica`
<chr> <dbl> <dbl> <dbl>
1 Petal.Length 9.93e-46 9.27e-50 4.90e-22
2 Petal.Width 2.72e-47 2.44e-48 2.11e-25
3 Sepal.Length 3.75e-17 3.97e-25 1.87e- 7
4 Sepal.Width 2.48e-15 4.57e- 9 1.82e- 3
Upvotes: 0