Reputation: 1306
I am trying to read data from a few files with tf data pipeline and train a multi input neural network. I train model successfully but when I want to test model then I get this error:
TypeError: Inputs to a layer should be tensors. Got: <PrefetchDataset shapes: (((None, None), (None, None)), (None,)), types: ((tf.float32, tf.float32), tf.float32)>
Preprocessing Functions:
def split_chr_by_tab(*lines):
sep = ","
features = [tf.strings.to_number(tf.strings.split(line, sep=sep), out_type=tf.float32) for line in lines]
return tf.concat(features, axis=0)
def separate_input_output(input):
return tuple([input[:-6], input[-6:-1]]), input[-1]
Data Pipeline:
Train_dataset = tf.data.Dataset.list_files(Train_file_list)
Train_dataset= Train_dataset.shuffle(epoch).repeat(epoch).interleave(lambda filename: tf.data.TextLineDataset(filename).skip(1), num_parallel_calls=25)
Train_dataset= Train_dataset.map(split_chr_by_tab,num_parallel_calls=tf.data.experimental.AUTOTUNE).map(separate_input_output,num_parallel_calls=tf.data.experimental.AUTOTUNE)
Train_dataset= Train_dataset.batch(batch_size).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Test_dataset = tf.data.Dataset.list_files(Test_file_list)
Test_dataset= Test_dataset.interleave(lambda filename: tf.data.TextLineDataset(filename).skip(1), num_parallel_calls=25)
Test_dataset= Test_dataset.map(split_chr_by_tab,num_parallel_calls=tf.data.experimental.AUTOTUNE).map(separate_input_output,num_parallel_calls=tf.data.experimental.AUTOTUNE)
Test_dataset= Test_dataset.batch(batch_size).prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Model Training and Evaluation (I get error when predicting on test data):
inp1 = Input(shape=(1000, ),name="inp1")
inp2 = Input(shape=(4, ),name="inp2")
merge1=concatenate([inp1, inp2])
first_dense = Dense(32,kernel_initializer=initializer, )(merge1)
output=dense(1,)(first_dense)
model = Model(inputs=[inp1, inp2], outputs=output)
model.fit(Train_dataset,callbacks=callbacks_list,verbose=1,epochs=epoch,steps_per_epoch=10)
prediction = model(Test_dataset)
Could you please tell me why I get error during prediction? For some reasons, I need to use model(Test_dataset) instead of model.predict(Test_dataset). Also, how can I store prediction values and true labels?
Upvotes: 3
Views: 5719
Reputation: 4960
Test_dataset
is a PrefetchDataset
object and you can not pass it to model.__call__
,since it expects a tensor as input. Use instead model.predict()
:
prediction = model.predict(Test_dataset)
If you insist to make predictions with calling model, then you can use it like this:
for p, _ in Test_dataset.take(1): # Takes 1 batch
prediction = model(p) # Predict 1 batch
print(prediction)
Upvotes: 3
Reputation: 128
You can also use:
Test_dataset.map(model)
assuming Test_dataset is already batched
Upvotes: 0