Reputation: 373
So I have a string that I'm attempting to parse through and then create 3 columns with the data I extract. From what I've seen, stringr doesn't really cover this case and the gsub I've used so far is excessive and involves me making multiple columns, parsing from those new columns, and then removing them and that seems really inefficient.
The format is this:
"blah, grabbed by ???-??-?????."
I need this:
???-??-?????
I've used placeholders here, but this is how the string typically looks
"blah, grabbed by PHI-80-J.Matthews."
or
"blah, grabbed by NE-5-J.Mills."
and sometimes there is text after the name like this:
"blah, grabbed by KC-10-T.Hill. Blah blah blah."
This is what I would like the end result to be:
Place | Number | Name |
---|---|---|
PHI | 80 | J.Matthews |
NE | 5 | J.Mills |
KC | 10 | T. Hill |
Edit for further explanation:
Most strings include other people in the same format so "downed by"
needs to be incorporated in someway to make sure it is grabbing the right name.
Ex.
"Throw by OAK-4-D.Carr, snap by PHI-62-J.Kelce, grabbed by KC-10-T.Hill. Penalty on OAK-4-D.Carr"
Desired Output:
Place | Number | Name |
---|---|---|
KC | 10 | T. Hill |
Upvotes: 2
Views: 542
Reputation: 78917
Here is an alternative way using sub
with regex "([A-Za-z]+\\.[A-Za-z]+).*", "\\1"
that removes the string after the second point.
separate
that splits the string by by
, and finally again separate
to get the desired columns.
library(dplyr)
library(tidyr)
df1 %>%
mutate(test1 = sub("([A-Za-z]+\\.[A-Za-z]+).*", "\\1", col1)) %>%
separate(test1, c('remove', 'keep'), sep = " by ") %>%
separate(keep, c("Place", "Number", "Name"), sep = "-") %>%
select(Place, Number, Name)
Output:
Place Number Name
<chr> <chr> <chr>
1 PHI 80 J.Matthews
2 NE 5 J.Mills
3 KC 10 T.Hill
Upvotes: 2
Reputation: 887028
This solution simply extract
the components based on the logic OP mentioned i.e. capture the characters that are needed as three groups - 1) one or more upper case letter ([A-Z]+
) followed by a dash (-
), 2) then one or more digits (\\d+
), and finally 3) non-whitespace characters (\\S+
) that follow the dash
library(tidyr)
extract(df1, col1, into = c("Place", "Number", "Name"),
".*grabbed by\\s([A-Z]+)-(\\d+)-(\\S+)\\..*", convert = TRUE)
-ouputt
# A tibble: 4 x 3
Place Number Name
<chr> <int> <chr>
1 PHI 80 J.Matthews
2 NE 5 J.Mills
3 KC 10 T.Hill
4 KC 10 T.Hill
Or do this in base R
read.table(text = sub(".*grabbed by\\s((\\w+-){2}\\S+)\\..*", "\\1",
df1$col1), header = FALSE, col.names = c("Place", "Number", "Name"), sep='-')
Place Number Name
1 PHI 80 J.Matthews
2 NE 5 J.Mills
3 KC 10 T.Hill
df1 <- structure(list(col1 = c("blah, grabbed by PHI-80-J.Matthews.",
"blah, grabbed by NE-5-J.Mills.", "blah, grabbed by KC-10-T.Hill. Blah blah blah.",
"Throw by OAK-4-D.Carr, snap by PHI-62-J.Kelce, grabbed by KC-10-T.Hill. Penalty on OAK-4-D.Carr"
)), row.names = c(NA, -4L), class = c("tbl_df", "tbl", "data.frame"
))
Upvotes: 3
Reputation: 21400
This solution actually does what you say in the title, namely first remove the text around the the target substring, then split it into columns:
library(tidyr)
library(stringr)
df1 %>%
mutate(col1 = str_extract(col1, "\\w+-\\w+-\\w\\.\\w+")) %>%
separate(col1,
into = c("Place", "Number", "Name"),
sep = "-")
# A tibble: 3 x 3
Place Number Name
<chr> <chr> <chr>
1 PHI 80 J.Matthews
2 NE 5 J.Mills
3 KC 10 T.Hill
Here, we make use of the fact that the character class \\w
is for letters irrespective of case and for digits (and also for the underscore).
Upvotes: 2