Reputation: 17676
How can I create a sparse matrix in the format of COO and have the pandas dataframe not unnest to a dense layout but keep the COO format for row,column,data
?
import numpy as np
import pandas as pd
from scipy.sparse import csr_matrix
from scipy.sparse import coo_matrix
a = np.eye(7)
a_csr = csr_matrix(a)
a_coo = a_csr.tocoo()
print(a_coo)
(0, 0) 1.0
(1, 1) 1.0
(2, 2) 1.0
(3, 3) 1.0
(4, 4) 1.0
(5, 5) 1.0
(6, 6) 1.0
I.e. how can I obtain a pandas dataframe from this that does not unnest this to
pd.DataFrame.sparse.from_spmatrix(a_coo)
but keeps the row,column,data
format as also visualized in the print
operation?
Upvotes: 1
Views: 1508
Reputation: 231385
The values you want to put in the dataframe are available as
a_coo.row, a_coo.col, a_coo.data
Upvotes: 2
Reputation: 17676
one possible workaround could be to use mtx serialization and interpreting the data as a CSV.
from scipy import io
io.mmwrite('sparse_thing', a_csr)
!cat sparse_thing.mtx
sparse_mtx_mm_df = pd.read_csv('sparse_thing.mtx', sep=' ', skiprows=3, header=None)
sparse_mtx_mm_df.columns = ['row', 'column', 'data_value']
sparse_mtx_mm_df
Is there a better (native, non serialization-baased) solution?
re_sparsed = coo_matrix((sparse_mtx_mm_df['data_value'].values, (sparse_mtx_mm_df.numpy_row.values, sparse_mtx_mm_df.numpy_column.values)))
re_sparsed.todense()
would then give back the initial numpy array
Upvotes: 0