Reputation: 915
I am trying to join two dataframes together based on values in one column being present in the list of values in the column of the dataframe to join with
df1 <- tibble(Group = c("Group_1", "Group_2", "Group_3"),
Members = list(letters[1:3],
letters[4:6],
letters[7:12]))
df2 <- tibble(Letters = c("a","g","f","b"),
Value = 1:4)
The final data frame would look like:
df3 <- tibble(Letters = c("a","g","f","b"),
Value = 1:4,
Group = c("Group_1", "Group_3", "Group_2", "Group_1"),
Members = list(letters[1:3],
letters[7:12],
letters[4:6],
letters[1:3]))
Ideally, this would be done using dplyr or another tidyverse package
Upvotes: 1
Views: 56
Reputation: 34621
An alternative with a single join:
library(tidyr)
library(dplyr)
library(purrr)
df1 %>%
mutate(Letters = map(Members, ~ .x[.x %in% df2$Letters])) %>%
unnest(Letters) %>%
left_join(df2)
Joining, by = "Letters"
# A tibble: 4 x 4
Group Members Letters Value
<chr> <list> <chr> <int>
1 Group_1 <chr [3]> a 1
2 Group_1 <chr [3]> b 4
3 Group_2 <chr [3]> f 3
4 Group_3 <chr [6]> g 2
Upvotes: 2
Reputation: 887831
Or using base R
cbind(df2, df1[sort(unlist(lapply(df1$Members, function(x) match(df2$Letters, x)))),])
Letters Value Group Members
1 a 1 Group_1 a, b, c
2 g 2 Group_1 a, b, c
3 f 3 Group_2 d, e, f
4 b 4 Group_3 g, h, i, j, k, l
Upvotes: 2
Reputation: 16998
You could use
library(dplyr)
library(tidyr)
df1 %>%
unnest(Members) %>%
rename(Letters = Members) %>%
# left_join(df2, by = "Letters") %>%
# drop_na() %>%
inner_join(df2, by = "Letters") %>% # (c) by akrun
right_join(df1, by = "Group")
to get
# A tibble: 4 x 4
Group Letters Value Members
<chr> <chr> <int> <list>
1 Group_1 a 1 <chr [3]>
2 Group_1 b 4 <chr [3]>
3 Group_2 f 3 <chr [3]>
4 Group_3 g 2 <chr [6]>
Upvotes: 3