Reputation: 165
Edit: Changing example to use Timedelta indices.
I have a DataFrame of different time ranges that represent indices in my main DataFrame. eg:
ranges = pd.DataFrame(data=np.array([[1,10,20],[3,15,30]]).T, columns=["Start","Stop"])
ranges = ranges.apply(pd.to_timedelta, unit="s")
ranges
Start Stop
0 0 days 00:00:01 0 days 00:00:03
1 0 days 00:00:10 0 days 00:00:15
2 0 days 00:00:20 0 days 00:00:30
my_data= pd.DataFrame(data=list(range(0,40*5,5)), columns=["data"])
my_data.index = pd.to_timedelta(my_data.index, unit="s")
I want to calculate the averages of the data in my_data for each of the time ranges in ranges. How can I do this?
One option would be as follows:
ranges.apply(lambda row: my_data.loc[row["Start"]:row["Stop"]].iloc[:-1].mean(), axis=1)
data
0 7.5
1 60.0
2 122.5
But can we do this without apply?
Upvotes: 1
Views: 243
Reputation: 28644
Here is one way to approach it:
Generate the timedeltas and concatenate into a single block:
# note the use of closed='left' (`Stop` is not included in the build)
timedelta = [pd.timedelta_range(a,b, closed='left', freq='1s')
for a, b in zip(ranges.Start, ranges.Stop)]
timedelta = timedelta[0].append(timedelta[1:])
Get the grouping which will be used for the groupby and aggregation:
counts = ranges.Stop.sub(ranges.Start).dt.seconds
counts = np.arange(counts.size).repeat(counts)
Group by and aggregate:
my_data.loc[timedelta].groupby(counts).mean()
data
0 7.5
1 60.0
2 122.5
Upvotes: 2