Reputation: 151
I am calling a torchscript (neural network serialized from Python) from a C++ program:
// define inputs
int batch = 3; // batch size
int n_inp = 2; // number of inputs
double I[batch][n_inp] = {{1.0, 1.0}, {2.0, 3.0}, {4.0, 5.0}}; // some random input
std::cout << "inputs" "\n"; // print inputs
for (int i = 0; i < batch; ++i)
{
std::cout << "\n";
for (int j = 0; j < n_inp; ++j)
{
std::cout << I[i][j] << "\n";
}
}
// prepare inputs for feeding to neural network
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::from_blob(I, {batch, n_inp}, at::kDouble));
// deserialize and load scriptmodule
torch::jit::script::Module module;
module = torch::jit::load("Net-0.pt");
// do forward pass
auto outputs = module.forward(inputs).toTensor();
Usually, to get data from the outputs, the following (element-wise) operation is performed:
// get data from outputs
std::cout << "outputs" << "\n";
int n_out = 1;
double outputs_data[batch][n_out];
for (int i = 0; i < batch; i++)
{
for (int j = 0; j < n_out; j++)
{
outputs_data[i][j] = outputs[i][j].item<double>();
std::cout << outputs_data[i][j] << "\n";
}
}
However, such looping using .item
is highly inefficient (in the actual code I will have millions of points predicted at each time step). I want to get data from outputs
directly (without looping over elements). I tried:
int n_out = 1;
double outputs_data[batch][n_out];
outputs_data = outputs.data_ptr<double>();
However, it is giving the error:
error: incompatible types in assignment of ‘double*’ to ‘double [batch][n_out]’
outputs_data = outputs.data_ptr<double>();
^
Note, that type of outputs_data
is fixed to double
and cannot be changed.
Upvotes: 0
Views: 303
Reputation: 151
It is necessary to make a deep copy as follows:
double outputs_data[batch];
std::memcpy(outputs_data, outputs.data_ptr<dfloat>(), sizeof(double)*batch);
Upvotes: 1