Reputation: 129
library(tidyverse)
#make a sample data frame
a <- c(2000,2000,2000,2000,2001,2001,2001,2001)
b <- c("M","M","M","F","F","M","F","F")
d<- c("Yes","No","Yes","No","No","Unknown","Unknown","Yes")
e <- c("Unknown","No","No","Yes","Unknown","Yes","No","Unknown")
df <- data.frame(a,b,d,e)
colnames(df) <- c("Year","Gender","q1","q2")
# make a table for q1
myvar <- c("Gender","q1")
mydf <- df[,myvar]
table1 <- mydf %>%
pivot_longer(-q1) %>%
group_by(name,q1,value) %>%
summarise(n=n()) %>%
mutate(prop = round(n/sum(n),3)*100,
summary_str = glue::glue("{n}({prop}%)")) %>%
pivot_wider(id_cols = c(name,value), names_from = "q1", values_from = "summary_str")
#make the function creating a table
maketable <- function(df,x){
myvar <- c("gender",paste0(x))
mydf <- df[,myvar]
table1 <- mydf %>%
pivot_longer(-get(x)) %>%
group_by(name,get(x),value) %>%
summarise(n=n()) %>%
mutate(prop = round(n/sum(n),3)*100,
summary_str = glue::glue("{n}({prop}%)")) %>%
pivot_wider(id_cols = c(name,value), names_from = paste0(x), values_from = "summary_str")
colnames(table1)
}
maketable(df,q1)
maketable(df,q2)
Error in paste0(x): object 'q1' not found.
I want to make a function, so that I can use it for q2.
Could anyone help to correct the code? or suggest a better way?
Output per variable is as below
Upvotes: 0
Views: 67
Reputation: 581
I have tried this one here
my_func = function(x)
{
new_df = df %>% group_by(Gender) %>% count({{x}}) %>% pivot_wider(names_from = {{x}}, values_from = n)
return(new_df)
}
Upvotes: 1
Reputation: 206382
If you want to pass in unquoted column names to your function, you can use the {{}}
(embrace) operator to inject them into your commands. For example
maketable <- function(df,x){
df %>%
select(Gender, {{x}}) %>%
pivot_longer(-{{x}}) %>%
group_by(name,{{x}},value)%>%
summarise(n=n()) %>%
mutate(prop = round(n/sum(n),3)*100,
summary_str = glue::glue("{n}({prop}%)")) %>%
pivot_wider(id_cols = c(name,value), names_from = {{x}}, values_from = "summary_str")
}
table1 <-maketable(df, q1)
See the programming with dplyr guide for more information.
Also note that the function just returns the new value. If you want to assign that to a new variable, make sure you do that outside the function. Values created inside of functions will not appear outside.
Upvotes: 2
Reputation: 15133
I'm not sure that this is what you asked
colns <- colnames(df)
lapply(colns[c(3:4)], function(x) {
myvar <- c("Gender", x)
mydf <- df[,myvar]
table1 <- mydf%>%
pivot_longer(-x) %>%
group_by_all %>%
summarise(n=n()) %>%
mutate(prop = round(n/sum(n),3)*100,
summary_str = glue::glue("{n}({prop}%)")) %>%
pivot_wider(id_cols = c(name,value), names_from = x, values_from = "summary_str")
})
result is like
[[1]]
# A tibble: 2 x 5
# Groups: name [1]
name value No Unknown Yes
<chr> <chr> <glue> <glue> <glue>
1 Gender F 2(25%) 1(12.5%) 1(12.5%)
2 Gender M 1(12.5%) 1(12.5%) 2(25%)
[[2]]
# A tibble: 2 x 5
# Groups: name [1]
name value No Unknown Yes
<chr> <chr> <glue> <glue> <glue>
1 Gender F 1(12.5%) 2(25%) 1(12.5%)
2 Gender M 2(25%) 1(12.5%) 1(12.5%)
You may need to change
lapply(colns[c(3:4)],...
3:4 to 3:102 for q1~q100
Upvotes: 0