Reputation: 349
I am trying to forecast sales for multiple time series I took from kaggle's Store item demand forecasting challenge. It consists of a long format time series for 10 stores and 50 items resulting in 500 time series stacked on top of each other. And for each store and each item, I have 5 years of daily records with weekly and annual seasonalities.
In total there are : 365.2days * 5years * 10stores *50items = 913000 records.
From my understanding based on what I've read so far on Hierarchical and Grouped time series, the whole dataframe could be structured as a Grouped Time Series and not simply as a strict Hierarchical Time Series as aggregation could be done at the store or item levels interchangeably.
I want to find a way to forecast all 500 time series (for store1_item1, store1_item2,..., store10_item50) for the next year (from 01-jan-2015 to 31-dec-2015) using the scikit-hts library and its AutoArimaModel function which is a wrapper function of pmdarima's AutoArima function.
To handle the two levels of seasonality, I added Fourier terms as exogenous features to deal with the annual seasonality while auto_arima deals with the weekly seasonality.
My problem is that I got an error at during prediction step.
Here's the error message :
ValueError: Provided exogenous values are not of the appropriate shape. Required (365, 4), got (365, 8).
I assume something is wrong with the exogenous dictionary but I do not know how to solve the issue as I'm using scikit-hts for the first time. To do this, I followed the official documentation of scikit-hts here.
EDIT :______________________________________________________________
I have not seen that a similar bug was reported on Github. Following the proposed fix that I implemented locally, I could have some results. However, even though there is no error when running the code, some of the forecasts are negative as raised in the comments below this post. And we even get disproportionate values for the positive ones.
Here are the plots for all the combinations of store and item. You can see that this seems to work for only one combination.
df.loc['2014','store_1_item_1'].plot()
predictions.loc['2015','store_1_item_1'].plot()
df.loc['2014','store_1_item_2'].plot()
predictions.loc['2015','store_1_item_2'].plot()
df.loc['2014','store_2_item_1'].plot()
predictions.loc['2015','store_2_item_1'].plot()
df.loc['2014','store_2_item_2'].plot()
predictions.loc['2015','store_2_item_2'].plot()
_____________________________________________________________________
Complete code:
# imports
import pandas as pd
from pmdarima.preprocessing import FourierFeaturizer
import hts
from hts.hierarchy import HierarchyTree
from hts.model import AutoArimaModel
from hts import HTSRegressor
# read data from the csv file
data = pd.read_csv('train.csv', index_col='date', parse_dates=True)
# Train/Test split with reduced size
train_data = data.query('store == [1,2] and item == [1, 2]').loc['2013':'2014']
test_data = data.query('store == [1,2] and item == [1, 2]').loc['2015']
# Create the stores time series
# For each timestamp group by store and apply sum
stores_ts = train_data.drop(columns=['item']).groupby(['date','store']).sum()
stores_ts = stores_ts.unstack('store')
stores_ts.columns = stores_ts.columns.droplevel(0)
stores_ts.columns = ['store_' + str(i) for i in stores_ts.columns]
# Create the items time series
# For each timestamp group by item and apply sum
items_ts = train_data.drop(columns=['store']).groupby(['date','item']).sum()
items_ts = items_ts.unstack('item')
items_ts.columns = items_ts.columns.droplevel(0)
items_ts.columns = ['item_' + str(i) for i in items_ts.columns]
# Create the stores_items time series
# For each timestamp group by store AND by item and apply sum
store_item_ts = train_data.pivot_table(index= 'date', columns=['store', 'item'], aggfunc='sum')
store_item_ts.columns = store_item_ts.columns.droplevel(0)
# Rename the columns as store_i_item_j
col_names = []
for i in store_item_ts.columns:
col_name = 'store_' + str(i[0]) + '_item_' + str(i[1])
col_names.append(col_name)
store_item_ts.columns = store_item_ts.columns.droplevel(0)
store_item_ts.columns = col_names
# Create a new dataframe and add the root level of the hierarchy as the sum of all stores (or all items)
df = pd.DataFrame()
df['total'] = stores_ts.sum(1)
# Concatenate all created dataframes into one df
# df is the dataframe that will be used for model training
df = pd.concat([df, stores_ts, items_ts, store_item_ts], 1)
# Build fourier terms for train and test sets
four_terms = FourierFeaturizer(365.2, 1)
# Build the exogenous features dataframe for training data
exog_train_df = pd.DataFrame()
for i in range(1, 3):
for j in range(1, 3):
_, exog = four_terms.fit_transform(train_data.query(f'store == {i} and item == {j}').sales)
exog.columns= [f'store_{i}_item_{j}_'+ x for x in exog.columns]
exog_train_df = pd.concat([exog_train_df, exog], axis=1)
exog_train_df['date'] = df.index
exog_train_df.set_index('date', inplace=True)
# add the exogenous features dataframe to df before training
df = pd.concat([df, exog_train_df], axis= 1)
# Build the exogenous features dataframe for test set
# It will be used only when using model.predict()
exog_test_df = pd.DataFrame()
for i in range(1, 3):
for j in range(1, 3):
_, exog_test = four_terms.fit_transform(test_data.query(f'store == {i} and item == {j}').sales)
exog_test.columns= [f'store_{i}_item_{j}_'+ x for x in exog_test.columns]
exog_test_df = pd.concat([exog_test_df, exog_test], axis=1)
# Build the hierarchy of the Grouped Time Series
stores = [i for i in stores_ts.columns]
items = [i for i in items_ts.columns]
store_items = col_names
# Exogenous features mapping
exog_store_items = {e: [v for v in exog_train_df.columns if v.startswith(e)] for e in store_items}
exog_stores = {e:[v for v in exog_train_df.columns if v.startswith(e)] for e in stores}
exog_items = {e:[v for v in exog_train_df.columns if v.find(e) != -1] for e in items}
exog_total = {'total':[v for v in exog_train_df.columns if v.find('FOURIER') != -1]}
# Merge all dictionaries
exog_to_merge = [exog_store_items, exog_stores, exog_items, exog_total]
exogenous = {k:v for x in exog_to_merge for k,v in x.items()}
# Build hierarchy
total = {'total': stores + items}
store_h = {k: [v for v in store_items if v.startswith(k)] for k in stores}
hierarchy = {**total, **store_h}
# Hierarchy tree automatically created by hts
ht = HierarchyTree.from_nodes(nodes=hierarchy, df=df, exogenous=exogenous)
# Instanciate the auto arima model using HTSRegressor
autoarima = HTSRegressor(model='auto_arima', D=1, m=7, seasonal=True, revision_method='OLS', n_jobs=12)
# Fit the model to the training df that includes time series and exog_train_df
# Set exogenous param to the previously built dictionary
model = autoarima.fit(df, hierarchy, exogenous=exogenous)
# Make predictions
# Set the exogenous_df param
predictions = model.predict(exogenous_df=exog_test_df, steps_ahead=365)
Other approaches I thought of and that I already implemented successfully for one series (for store 1 and item 1 for example) :
TBATS applied to each series independently inside a loop across all 500 time series
auto_arima (SARIMAX) with exogenous features (=Fourier terms to deal with the weekly and annual seasonalities) for each series independently + a loop across all 500 time series
What do you think of these approaches? Do you have other suggestions on how to scale ARIMA to multiple time series?
I also want to try LSTM but I'm new to data science and deep learning and do not know how to prepare the data. Should I keep the data in their original form (long format) and apply one hot encoding to train_data['store'] and train_data['item'] columns or should I start with the df I ended up with here?
Upvotes: 2
Views: 4352
Reputation: 103
I Hope this helped you in fixing the issue with exogenous regressors. To handle negative forecasts I would suggest you to try square root transformation.
Upvotes: 1