Reputation: 29
I created an activation function class Threshold
that should operate on one-hot-encoded image tensors.
The function performs min-max feature scaling on each channel followed by thresholding.
class Threshold(nn.Module):
def __init__(self, threshold=.5):
super().__init__()
if threshold < 0.0 or threshold > 1.0:
raise ValueError("Threshold value must be in [0,1]")
else:
self.threshold = threshold
def min_max_fscale(self, input):
r"""
applies min max feature scaling to input. Each channel is treated individually.
input is assumed to be N x C x H x W (one-hot-encoded prediction)
"""
for i in range(input.shape[0]):
# N
for j in range(input.shape[1]):
# C
min = torch.min(input[i][j])
max = torch.max(input[i][j])
input[i][j] = (input[i][j] - min) / (max - min)
return input
def forward(self, input):
assert (len(input.shape) == 4), f"input has wrong number of dims. Must have dim = 4 but has dim {input.shape}"
input = self.min_max_fscale(input)
return (input >= self.threshold) * 1.0
When I use the function I get the following error, since the gradients are not calculated automatically I assume.
Variable._execution_engine.run_backward(RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
I already had a look at How to properly update the weights in PyTorch? but could not get a clue how to apply it to my case.
How is it possible to calculate the gradients for this function?
Thanks for your help.
Upvotes: 0
Views: 797
Reputation: 40648
The issue is you are manipulating and overwriting elements, this time of operation can't be tracked by autograd. Instead, you should stick with built-in functions. You example is not that tricky to tackle: you are looking to retrieve the minimum and maximum values along input.shape[0] x input.shape[1]
. Then you will scale your whole tensor in one go i.e. in vectorized form. No for loops involved!
One way to compute min/max along multiple axes is to flatten those:
>>> x_f = x.flatten(2)
Then, find the min-max on the flattened axis while retaining all shapes:
>>> x_min = x_f.min(axis=-1, keepdim=True).values
>>> x_max = x_f.max(axis=-1, keepdim=True).values
The resulting min_max_fscale
function would look something like:
class Threshold(nn.Module):
def min_max_fscale(self, x):
r"""
Applies min max feature scaling to input. Each channel is treated individually.
Input is assumed to be N x C x H x W (one-hot-encoded prediction)
"""
x_f = x.flatten(2)
x_min, x_max = x_f.min(-1, True).values, x_f.max(-1, True).values
x_f = (x_f - x_min) / (x_max - x_min)
return x_f.reshape_as(x)
You would notice that you can now backpropagate on min_max_fscale
... but not on forward
. This is because you are applying a boolean condition which is not a differentiable operation.
Upvotes: 1