Reputation: 1
I am trying out the code by adfoucart for Region growing with the watershed transform but I ran into some errors when identifying the markers for the image.
from skimage.filters import rank,gaussian
from skimage.morphology import disk
from skimage.feature import peak_local_max
def get_markers(img2, indices=False):
im_ = gaussian(img2, sigma=4)
gradr = rank.gradient(im_[:,:,0],disk(5)).astype('int')
gradg = rank.gradient(im_[:,:,1],disk(5)).astype('int')
gradb = rank.gradient(im_[:,:,2],disk(5)).astype('int')
grad = gradr+gradg+gradb
return peak_local_max(grad.max()-grad,threshold_rel=0.5, min_distance=60,indices=indices),grad
markers,grad = get_markers(img2, True)
plt.figure()
plt.imshow(grad, cmap=plt.cm.gray)
plt.plot(markers[:,1],markers[:,0],'b+')
plt.show()
and I am receiving this error.
IndexError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_17316/2204442073.py in <module>
12 return peak_local_max(grad.max()-grad,threshold_rel=0.5, min_distance=60,indices=indices),grad
13
---> 14 markers,grad = get_markers(img2, True)
15 plt.figure()
16 plt.imshow(grad, cmap=plt.cm.gray)
~\AppData\Local\Temp/ipykernel_17316/2204442073.py in get_markers(img2, indices)
5 def get_markers(img2, indices=False):
6 im_ = gaussian(img2, sigma=4)
----> 7 gradr = rank.gradient(im_[:,:,0],disk(5)).astype('int')
8 gradg = rank.gradient(im_[:,:,1],disk(5)).astype('int')
9 gradb = rank.gradient(im_[:,:,2],disk(5)).astype('int')
IndexError: too many indices for array: array is 2-dimensional, but 3 were indexed
Any help will be appreciated thanj you!
Upvotes: 0
Views: 93
Reputation: 56
You are probably trying to run the code on a grayscale image, which will only have 2 dimensions (height and width), while the code was written expecting an RGB image with 3 dimensions (height, width and color channel).
On a grayscale image, the lines:
gradr = rank.gradient(im_[:,:,0],disk(5)).astype('int')
gradg = rank.gradient(im_[:,:,1],disk(5)).astype('int')
gradb = rank.gradient(im_[:,:,2],disk(5)).astype('int')
grad = gradr+gradg+gradb
Could be simply replaced by:
grad = rank.gradient(im_, disk(5))
Upvotes: 1