Reputation: 7255
FYI, pyspark don't have atribut .shape
lie pandas. So, here's what I did
print((df.count(), len(df.columns)))
The error message
Py4JJavaError Traceback (most recent call last)
<ipython-input-21-aefe947885ec> in <module>
----> 1 print((df.count(), len(df.columns)))
/opt/cloudera/parcels/CDH-7.1.3-1.cdh7.1.3.p0.4992530/lib/spark/python/pyspark/sql/dataframe.py in count(self)
521 2
522 """
--> 523 return int(self._jdf.count())
524
525 @ignore_unicode_prefix
/opt/cloudera/parcels/CDH-7.1.3-1.cdh7.1.3.p0.4992530/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/opt/cloudera/parcels/CDH-7.1.3-1.cdh7.1.3.p0.4992530/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/opt/cloudera/parcels/CDH-7.1.3-1.cdh7.1.3.p0.4992530/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o2492.count.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 142.0 failed 4 times, most recent failure: Lost task 0.3 in stage 142.0 (TID 7646, adaijktwrk04.adreach.co, executor 338): ExecutorLostFailure (executor 338 exited caused by one of the running tasks) Reason: Container from a bad node: container_e34_1626420344890_0830_01_000350 on host: adaijktwrk04.adreach.co. Exit status: 143. Diagnostics: [2021-09-03 05:48:30.176]Container killed on request. Exit code is 143
[2021-09-03 05:48:30.177]Container exited with a non-zero exit code 143.
[2021-09-03 05:48:30.177]Killed by external signal
.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1891)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1879)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1878)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:927)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:927)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2112)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2061)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2050)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:738)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2088)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2107)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2132)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:990)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:385)
at org.apache.spark.rdd.RDD.collect(RDD.scala:989)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:309)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2836)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2835)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
at org.apache.spark.sql.Dataset.count(Dataset.scala:2835)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
How to know the size of a pyspark dataframe?
Upvotes: 0
Views: 785
Reputation: 1003
They way you are checking is the correct way to get the shape of the dataframe, but according to the error you received it seems you have a problem with Spark on your machine.
When a container (Spark executor) runs out of memory, YARN automatically kills it. This causes a "Container killed on request. Exit code is 137" error. These errors can happen in different job stages, both in narrow and wide transformations.
Upvotes: 2