Reputation: 138
In a spark structured streaming context, I have this dataframe :
+------+----------+---------+
|brand |Timestamp |frequency|
+------+----------+---------+
|BR1 |1632899456|4 |
|BR1 |1632901256|4 |
|BR300 |1632901796|null |
|BR300 |1632899155|null |
|BR90 |1632901743|1 |
|BR1 |1632899933|4 |
|BR1 |1632899756|4 |
|BR22 |1632900776|null |
|BR22 |1632900176|null |
+------+----------+---------+
I would like to replace the null values by the frequency of the brand in the batch, in order to obtain a dataframe like this one :
+------+----------+---------+
|brand |Timestamp |frequency|
+------+----------+---------+
|BR1 |1632899456|4 |
|BR1 |1632901256|4 |
|BR300 |1632901796|2 |
|BR300 |1632899155|2 |
|BR90 |1632901743|1 |
|BR1 |1632899933|4 |
|BR1 |1632899756|4 |
|BR22 |1632900776|2 |
|BR22 |1632900176|2 |
+------+----------+---------+
I am using Spark version 2.4.3 and SQLContext, with scala language.
Upvotes: 1
Views: 204
Reputation: 7207
With "count" over window function:
val df = Seq(
("BR1", 1632899456, Some(4)),
("BR1", 1632901256, Some(4)),
("BR300", 1632901796, None),
("BR300", 1632899155, None),
("BR90", 1632901743, Some(1)),
("BR1", 1632899933, Some(4)),
("BR1", 1632899756, Some(4)),
("BR22", 1632900776, None),
("BR22", 1632900176, None)
).toDF("brand", "Timestamp", "frequency")
val brandWindow = Window.partitionBy("brand")
val result = df.withColumn("frequency", when($"frequency".isNotNull, $"frequency").otherwise(count($"brand").over(brandWindow)))
Result:
+-----+----------+---------+
|BR1 |1632899456|4 |
|BR1 |1632901256|4 |
|BR1 |1632899933|4 |
|BR1 |1632899756|4 |
|BR22 |1632900776|2 |
|BR22 |1632900176|2 |
|BR300|1632901796|2 |
|BR300|1632899155|2 |
|BR90 |1632901743|1 |
+-----+----------+---------+
Solution with GroupBy:
val countDF = df.select("brand").groupBy("brand").count()
df.alias("df")
.join(countDF.alias("cnt"), Seq("brand"))
.withColumn("frequency", when($"df.frequency".isNotNull, $"df.frequency").otherwise($"cnt.count"))
.select("df.brand", "df.Timestamp", "frequency")
Upvotes: 2
Reputation: 38
Hi bro I'm a java programmer . It's better to make a loop through the freq column and search for first null and its related brand . so count the number of that till the end of the table and correct the null value of that brand and go for the other null brand and correct it . here is my java solution :(I didn't test this code just wrote it text editor but I hope works well, 70%;)
//this is your table + dimensions
table[9][3];
int repeatCounter = 0;
String brand;
boolean thereIsNull = true;
//define an array to save the address of the specified null brand
int[tablecolumns.length()] brandmemory;
while (thereisnull) {
for (int i = 0; i < tablecolumns.length(); i++) {
if (array[i][3] == null) {
thereIsNull = true;
brand = array[i][1];
for (int n = i; n < tablecolumns.length(); i++) {
if (brand == array[i][1]) {
repeatCounter++;
// making an array to save address of the null brand in table:
brandmemory[repeatCounter] = i;
else{
break ;
}
}
for (int p = 1; p = repeatCounter ; p++) {
//changing null values to number of repeats
array[brandmemory[p]][3] = repeatCounter;
}
}
}
else{
continue;
//check if the table has any null content if no :end of program.
for(int w>i ; w=tablecolumns.length();w++ ){
if(array[w] != null ){
thereIsNull = false;
else{ thereIsNull = true;
break;
}
}
}
}
}
Upvotes: -1