Reputation: 25
I have an object (S3; lm) that contains the linear regression outputs of 471 different models. I am trying to extract the standard error of a specific variable in each model but I'm unsure how to do so, can anyone help? Specifically, I want to extract the standard error for the variable "p" for EACH of the 471 models saved in the "fit" object.
varnames = names(merged1)[2036:2507]
fit <- lapply(varnames,
FUN=function(p) lm(formula(paste("Dx ~ x + y + z + q +", p)),data=merged1))
names(fit) <- varnames
Thank you so much!
Note Edited to reflect the anonymous function p, rather than x, as stated previously.
Upvotes: 1
Views: 212
Reputation: 269396
Using fit shown reproducibly in the Note at the end invoke map_dfr
on that with tidy
which will give a data frame containing coefficients and associated statistics. We filter out the rows we want.
library(broom) # tidy
library(dplyr)
library(purrr) # map_dfr
fit %>%
map_dfr(tidy, .id = "variable") %>%
filter(term == variable)
giving:
# A tibble: 8 x 6
variable term estimate std.error statistic p.value
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 hp hp -0.0147 0.0147 -1.00 0.325
2 drat drat 1.21 1.50 0.812 0.424
3 wt wt -3.64 1.04 -3.50 0.00160
4 qsec qsec -0.243 0.402 -0.604 0.551
5 vs vs -0.634 1.90 -0.334 0.741
6 am am 1.93 1.34 1.44 0.161
7 gear gear 0.158 0.910 0.174 0.863
8 carb carb -0.737 0.393 -1.88 0.0711
We compute fit reproducibly using mtcars which is built into R.
data <- mtcars
resp <- "mpg" # response
fixed <- c("cyl", "disp") # always include these
varnames <- setdiff(names(data), c(resp, fixed)) # incl one at a time
fit <- Map(function(v) {
fo <- reformulate(c(fixed, v), resp)
lm(fo, data)
}, varnames)
Significantly revised.
Upvotes: 1
Reputation: 2660
sapply(fit,function(x) summary(x)$coefficients[p,][2],simplify = F)
subsetting to 2nd element serves standard error for a variable.
Upvotes: 1