Reputation:
I have a trained PyTorch model and I want to get the confidence score of predictions in range (0-100)
or (0-1)
. The code below is giving me a score but its range is undefined. I want the score in a defined range of (0-1)
or (0-100)
. Any idea how to get this?
conf, classes = torch.max(output, 1)
My code:
model = torch.load(r'best.pt')
model.eval()
def preprocess(imgs):
im = torch.from_numpy(imgs)
im = im.float() # uint8 to fp16/32
im /= 255.0
return im
img_path = cv2.imread("/content/634282.jpg",0)
cropped = cv2.resize(img_path,(28,28))
imgs = preprocess(np.array([[cropped]]))
def predict_allCharacters(imgs):
output = model(imgs)
conf, classes = torch.max(output, 1)
class_names = '0123456789'
return conf, class_names[classes.item()]
Model definition:
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=16,
kernel_size=5,
stride=1,
padding=2,
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2),
)
# fully connected layer, output 10 classes
self.out = nn.Linear(32 * 7 * 7, 37)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
# flatten the output of conv2 to (batch_size, 32 * 7 * 7)
x = x.view(x.size(0), -1)
output = self.out(x)
return output # return x for visualization
Upvotes: 1
Views: 7974
Reputation: 13601
In your case, output
represents the logits. One way of getting a probability out of them is to use the Softmax function. As it seems that output
contains the outputs from a batch, not a single sample, you can do something like this:
probs = torch.nn.functional.softmax(output, dim=1)
Then, in probs
, each row would have the probability (i.e., in range [0, 1]
, sum=1
) of each class for a given sample.
So, your predict_allCharacters
could be modified to:
def predict_allCharacters(imgs):
output = model(imgs)
probs = torch.nn.functional.softmax(output, dim=1)
conf, classes = torch.max(probs, 1)
class_names = '0123456789'
return conf, class_names[classes.item()]
Upvotes: 4