Reputation: 882
I want to generate random numbers like from np.random.exponential
but clipped / truncated at values a,b
. For example, if a=100
, b=500
then I want the function to generate random numbers following e^(-x)
in the range [100, 500]
.
An inefficient way would be:
rands = np.random.exponential(size=10**7)
rands = rands[(rands>a) and (rands<b)]
Is there an existing package that can do this for me? Ideally for various distributions, not just exponential.
Upvotes: 2
Views: 1392
Reputation: 1337
If we clip the values after using the exponential generator, there are two problems with approach proposed in the question.
np.random.exponential()
returns values between 0 and 1, so we can't simply use 100 and 500 as the lower and upper bounds. We must scale the generated random numbers before scaling.I wrote the workaround using exp(uniform). I tested your solution using smaller values of a and b (so that we don't get empty arrays). A timed approach shows this is faster by around 50%
import time
import numpy as np
import matplotlib.pyplot as plt
def truncated_exp_OP(a,b, how_many):
rands = np.random.exponential(size=how_many)
rands = rands[(rands>a) & (rands<b)]
return rands
def truncated_exp_NK(a,b, how_many):
a = -np.log(a)
b = -np.log(b)
rands = np.exp(-(np.random.rand(how_many)*(b-a) + a))
return rands
timeTakenOP = []
for i in range(20):
startTime = time.time()
r = truncated_exp_OP(0.001,0.39, 10**7)
endTime = time.time()
timeTakenOP.append(endTime - startTime)
print ("OP solution: ", np.mean(timeTakenOP))
plt.hist(r.flatten(), 300);
plt.show()
timeTakenNK = []
for i in range(20):
startTime = time.time()
r = truncated_exp_NK(100,500, 10**7)
endTime = time.time()
timeTakenNK.append(endTime - startTime)
print ("NK solution: ", np.mean(timeTakenNK))
plt.hist(r.flatten(), 300);
plt.show()
Average run time :
OP solution: 0.28491891622543336 vs
NK solution: 0.1437338709831238
The histogram plots of the random numbers are shown below:
OP's approach:
This approach:
Upvotes: 1