Reputation: 16904
I have one million rows of data with six features and three classes.
6.442 6.338 7.027 8.789 10.009 12.566 A
6.338 7.027 5.338 10.009 8.122 11.217 A
7.027 5.338 5.335 8.122 5.537 6.408 B
5.338 5.335 5.659 5.537 5.241 7.043 B
5.659 6.954 5.954 8.470 9.266 9.334 C
6.954 5.954 6.117 9.266 9.243 12.200 C
5.954 6.117 6.180 9.243 8.688 11.842 A
6.117 6.180 5.393 8.688 5.073 7.722 A
... ... ... ... ... ... ... ... ... ... ...
I want to feed this dataset into a CNN.
So, I wrote the following Keras code:
model = Sequential()
model.add(Conv1D(filters=n_hidden_1, kernel_size=3, activation='sigmoid',
input_shape=(1, num_features)))
model.add(Conv1D(filters=n_hidden_2, kernel_size=3, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))
This code is giving me the following error:
ValueError: Negative dimension size caused by subtracting 3 from 1 for
'{{node conv1d/conv1d}}
= Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1]
, explicit_paddings=[], padding="VALID", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true]
(conv1d/conv1d/ExpandDims, conv1d/conv1d/ExpandDims_1)' with input shapes
: [?,1,1,6], [1,3,6,64].
Edit: Then, I modified the model as follows:
model = Sequential()
model.add(Conv1D(filters=n_hidden_1, kernel_size=3, activation='sigmoid',
input_shape=(n_hidden_1, num_features, 1)))
model.add(Conv1D(filters=n_hidden_2, kernel_size=3, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(MaxPooling1D(3))
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))
Now I am getting the following error message:
ValueError: Input 0 of layer max_pooling1d is incompatible with the
layer: expected ndim=3, found ndim=4. Full shape received:
(None, 64, 2, 64)
What am I writing wrong and why is it wrong?
Upvotes: 0
Views: 672
Reputation: 4960
Conv1D
and MaxPool1D
expect input shape like (n_batches, n_steps, n_features)
. So, input shape should be like input_shape=(n_steps, n_features)
. And if you want to consider 6 as steps, then it could be like input_shape=(6,1)
.
train_X = np.expand_dims(train_x, axis=-1)
validate_x = np.expand_dims(validate_x, axis=-1)
n_steps
by 2, then your second dimension shape change is like:Conv1D
-> 4Conv1D
-> 2And you can not apply a MaxPool1D
by 3 pool size. Either you can change pool size to 2, or add padding="same"
to one of your convolution layers:
model = tf.keras.Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='sigmoid', input_shape=(6, 1)))
model.add(Conv1D(filters=64, kernel_size=3, activation='sigmoid'))
model.add(Dropout(0.5))
model.add(MaxPooling1D(2)) # change to 2 or add `padding="same"` to the conv layers
model.add(Flatten())
model.add(Dense(3, activation='softmax'))
model.summary()
Summary:
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_2 (Conv1D) (None, 4, 64) 256
_________________________________________________________________
conv1d_3 (Conv1D) (None, 2, 64) 12352
_________________________________________________________________
dropout_1 (Dropout) (None, 2, 64) 0
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 1, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 64) 0
_________________________________________________________________
dense_1 (Dense) (None, 3) 195
=================================================================
Total params: 13,258
Trainable params: 13,258
Non-trainable params: 0
_________________________________________________________________
Upvotes: 1