Reputation: 800
In my problem, I would like to tune sklearn.ensemble.StackingRegressor using a simple RandomizedSearchCV tuner. Since we need to define estimators while instantiating StackingRegressor(), I couldn't defined parameter space for estimators in my param_distribution randomizedsearch properly.
I tried the following and I faced with error:
from sklearn.datasets import load_diabetes
from sklearn.linear_model import RidgeCV
from sklearn.svm import LinearSVR
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.ensemble import StackingRegressor
X, y = load_diabetes(return_X_y=True)
rfr = RandomForestRegressor()
gbr = GradientBoostingRegressor()
estimators = [rfr, gbr]
sreg = StackingRegressor(estimators=estimators)
params = {'rfr__max_depth': [3, 5, 10, 100],
'gbr__max_depth': [3, 5, 10, 100]}
grid = RandomizedSearchCV(estimator=sreg,
param_distributions=params,
cv=3)
grid.fit(X,y)
and I faced with errors AttributeError: 'RandomForestRegressor' object has no attribute 'estimators_'
.
Is there anyway to tune parameters of different estimators within the StackingRegressor?
Upvotes: 0
Views: 1575
Reputation: 8663
If you define your estimators as a list of tuples of estimator names and estimator instances as shown below your code should work.
import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.ensemble import StackingRegressor
X, y = load_diabetes(return_X_y=True)
rfr = RandomForestRegressor()
gbr = GradientBoostingRegressor()
estimators = [('rfr', rfr), ('gbr', gbr)]
sreg = StackingRegressor(estimators=estimators)
params = {
'rfr__max_depth': [3, 5],
'gbr__max_depth': [3, 5]
}
grid = RandomizedSearchCV(
estimator=sreg,
param_distributions=params,
n_iter=2,
cv=3,
verbose=1,
random_state=100
)
grid.fit(X, y)
res = pd.DataFrame(grid.cv_results_)
print(res)
# mean_fit_time std_fit_time ... std_test_score rank_test_score
# 0 1.121728 0.024188 ... 0.024546 2
# 1 1.096936 0.034377 ... 0.013047 1
Upvotes: 2