Reputation: 10236
I implemented a breadth-first search for a board game. Here I use a dict
to reflect duplicate board configurations on each level. Currently, the overall search takes nearly all the RAM I have (16GB) for one start configuration. I plan to integrate intersection checks for different start configurations. So I need read access to the configurations I found, and the dict for one level doesn't change if the level is finished.
That's why I plan to convert the dict
into a flat data structure (list
or tuple
) with keys at [2n]
position and values at [2n+1]
position before I evaluate the next level.
The problem is to find a fast conversion from {1: 2, 3: 4}
to [1, 2, 3, 4]
for dict
with more than 10**8
items.
I found sum(dict.items(), ())
from a comment by Natim to another question, which worked, but which is too slow (it seemingly stops working for dict
s with more than 10**6 items).
Upvotes: 3
Views: 206
Reputation: 24069
You can try this:
dct = {1:2, 3:4, 5:6, 7:8}
out = [None] * 2*len(dct)
for idx, (out[2*idx],out[2*idx+1]) in enumerate(dct.items()):
pass
print(out)
Output:
[1, 2, 3, 4, 5, 6, 7, 8]
Check Runtime with dictionary
that size is 50_000_000
: (on colab)
from timeit import timeit
import operator, functools
from itertools import chain
def approach1(dct):
li = []
for k, v in dct.items():
li.extend([k,v])
return li
def approach2(dct):
out = [None] * 2*len(dct)
for idx, (out[2*idx],out[2*idx+1]) in enumerate(dct.items()):
pass
return (out)
def approach3(dct):
return functools.reduce(operator.iconcat, dct.items(), [])
def approach4(dct):
return list(chain.from_iterable(dct.items()))
def approach5(dct):
return [i for t in dct.items() for i in t]
funcs = approach1, approach2, approach3, approach4, approach5
dct = {i:i for i in range(50_000_000)}
for _ in range(3):
for func in funcs:
t = timeit(lambda: func(dct), number=1)
print('%.3f s ' % t, func.__name__)
print()
Output:
8.825 s approach1
13.243 s approach2
4.506 s approach3
3.809 s approach4
7.881 s approach5
8.391 s approach1
13.159 s approach2
4.487 s approach3
3.854 s approach4
7.946 s approach5
8.391 s approach1
13.197 s approach2
4.448 s approach3
3.681 s approach4
7.904 s approach5
Check Runtime with different size of dictionary
: (on colab)
from timeit import timeit
import operator, functools
from itertools import chain
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
def app_extend(dct):
li = []
for k, v in dct.items():
li.extend([k,v])
return li
def app_enumerate(dct):
out = [None] * 2*len(dct)
for idx, (out[2*idx],out[2*idx+1]) in enumerate(dct.items()):
pass
return (out)
def app_functools(dct):
return functools.reduce(operator.iconcat, dct.items(), [])
def app_chain(dct):
return list(chain.from_iterable(dct.items()))
def app_for(dct):
return [i for t in dct.items() for i in t]
funcs = app_extend, app_enumerate, app_functools, app_chain, app_for
dct_rslt = {}
for dct_size in [100_000, 250_000, 500_000, 1_000_000, 2_500_000, 5_000_000, 10_000_000, 25_000_000, 50_000_000]:
dct = {i:i for i in range(dct_size)}
dct_rslt[str(dct_size)] = {func.__name__ : timeit(lambda: func(dct), number=1) for func in funcs}
df = pd.DataFrame(dct_rslt).T
fig, ax = plt.subplots()
fig.set_size_inches(12, 9)
sns.lineplot(data=df)
plt.xlabel('Dictionary Size')
plt.ylabel('Time(sec)')
plt.show()
Upvotes: 2
Reputation: 10236
Appending and extending a list
is quite efficient in python:
def dict_to_list(d):
li = []
for k, v in d.items():
li.extend([k,v])
return li
Therefore, the above apparently naive function beats the very compact and somehow also elegant expression list(sum(d.items(), ()))
in terms of performance.
Upvotes: 0
Reputation: 71620
Use itertools
function chain
and classmethod
alternative constructor from_iterable
:
>>> from itertools import chain
>>> list(chain.from_iterable(dct.items()))
[1, 2, 3, 4]
>>>
Or with operator.iconcat
and functools.reduce
:
>>> import operator, functools
>>> functools.reduce(operator.iconcat, dct.items(), [])
[1, 2, 3, 4]
>>>
Upvotes: 0
Reputation: 107134
You can use a list comprehension over the items of the dict:
d = {1: 2, 3: 4}
print([i for t in d.items() for i in t])
This outputs:
[1, 2, 3, 4]
Upvotes: 0